IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v31y1997i1p72-82.html
   My bibliography  Save this article

Airline Scheduling for the Temporary Closure of Airports

Author

Listed:
  • Shangyao Yan

    (National Central University, Chungli 320, Taiwan)

  • Chung-Gee Lin

    (National Central University, Chungli 320, Taiwan)

Abstract

The poor scheduling of flights or a fleet resulting from temporary closure of airports may cause a substantial loss of profit and decreased levels of service for airline carriers. This research develops a framework in order to help carriers handle schedule perturbations resulting from the temporary closure of airports. The framework is based on a basic model constructed as a time-space network from which several strategic network models are developed for scheduling. These network models are formulated as pure network flow problems or network flow problems with side constraints. The former are solved using the network simplex method whereas the latter are solved using a Lagrangian relaxation-based algorithm. To test how well the model may be applied in the real world, a case study regarding the international operations of a major Taiwan airline was performed. The results show that the framework could be useful in actual operations.

Suggested Citation

  • Shangyao Yan & Chung-Gee Lin, 1997. "Airline Scheduling for the Temporary Closure of Airports," Transportation Science, INFORMS, vol. 31(1), pages 72-82, February.
  • Handle: RePEc:inm:ortrsc:v:31:y:1997:i:1:p:72-82
    DOI: 10.1287/trsc.31.1.72
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.31.1.72
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.31.1.72?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Obrad Babić & Milica Kalić & Goran Pavković & Slavica Dožić & Mirjana Čangalović, 2010. "Heuristic approach to the airline schedule disturbances problem," Transportation Planning and Technology, Taylor & Francis Journals, vol. 33(3), pages 257-280, February.
    2. Yan, Shangyao & Tang, Ching-Hui, 2009. "Inter-city bus scheduling under variable market share and uncertain market demands," Omega, Elsevier, vol. 37(1), pages 178-192, February.
    3. Thengvall, Benjamin G. & Yu, Gang & Bard, Jonathan F., 2001. "Multiple fleet aircraft schedule recovery following hub closures," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(4), pages 289-308, May.
    4. Wenkai Li & Mark Wallace, 2012. "Disruption Management for Commercial Aviation," Working Papers EMS_2012_18, Research Institute, International University of Japan.
    5. Shangyao Yan & Chun-Ying Chen & Chuan-Che Wu, 2012. "Solution methods for the taxi pooling problem," Transportation, Springer, vol. 39(3), pages 723-748, May.
    6. Nissen, Rüdiger & Haase, Knut, 2004. "Duty-period-based network model for airline crew rescheduling," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 581, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    7. Janić, Milan, 2015. "Reprint of “Modelling the resilience, friability and costs of an air transport network affected by a large-scale disruptive event”," Transportation Research Part A: Policy and Practice, Elsevier, vol. 81(C), pages 77-92.
    8. Derui Wang & Yanfeng Wu & Jian-Qiang Hu & Miaomiao Liu & Peiwen Yu & Cheng Zhang & Yan Wu, 2019. "Flight Schedule Recovery: A Simulation-Based Approach," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(06), pages 1-19, December.
    9. Philippe Wendt & Augusto Voltes-Dorta & Pere Suau-Sanchez, 2020. "Estimating the costs for the airport operator and airlines of a drone-related shutdown: an application to Frankfurt international airport," Journal of Transportation Security, Springer, vol. 13(1), pages 93-116, June.
    10. Janić, Milan, 2015. "Modelling the resilience, friability and costs of an air transport network affected by a large-scale disruptive event," Transportation Research Part A: Policy and Practice, Elsevier, vol. 71(C), pages 1-16.
    11. Jay M. Rosenberger & Ellis L. Johnson & George L. Nemhauser, 2003. "Rerouting Aircraft for Airline Recovery," Transportation Science, INFORMS, vol. 37(4), pages 408-421, November.
    12. Shangyao Yan & Chin-Hui Tang & Chong-Lan Shieh, 2005. "A Simulation Framework for Evaluating Airline Temporary Schedule Adjustments Following Incidents," Transportation Planning and Technology, Taylor & Francis Journals, vol. 28(3), pages 189-211, March.
    13. Yan, Shangyao & Tang, Ching-Hui & Fu, Tseng-Chih, 2008. "An airline scheduling model and solution algorithms under stochastic demands," European Journal of Operational Research, Elsevier, vol. 190(1), pages 22-39, October.
    14. S Yan & C-H Tang & C-H Chen, 2008. "Reassignments of common-use check-in counters following airport incidents," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(8), pages 1100-1108, August.
    15. T. Andersson * & P. Värbrand, 2004. "The flight perturbation problem," Transportation Planning and Technology, Taylor & Francis Journals, vol. 27(2), pages 91-117, March.
    16. Yan, Shangyao & Chi, Chin-Jen & Tang, Ching-Hui, 2006. "Inter-city bus routing and timetable setting under stochastic demands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(7), pages 572-586, August.
    17. Voltes-Dorta, Augusto & Rodríguez-Déniz, Héctor & Suau-Sanchez, Pere, 2017. "Vulnerability of the European air transport network to major airport closures from the perspective of passenger delays: Ranking the most critical airports," Transportation Research Part A: Policy and Practice, Elsevier, vol. 96(C), pages 119-145.
    18. Joyce W. Yen & John R. Birge, 2006. "A Stochastic Programming Approach to the Airline Crew Scheduling Problem," Transportation Science, INFORMS, vol. 40(1), pages 3-14, February.
    19. Bard, Jonathan F. & Mohan, Dinesh Natarajan, 2008. "Reallocating arrival slots during a ground delay program," Transportation Research Part B: Methodological, Elsevier, vol. 42(2), pages 113-134, February.
    20. Voltes-Dorta, Augusto & Rodríguez-Déniz, Héctor & Suau-Sanchez, Pere, 2017. "Passenger recovery after an airport closure at tourist destinations: A case study of Palma de Mallorca airport," Tourism Management, Elsevier, vol. 59(C), pages 449-466.
    21. Yan, Shangyao & Chen, Hao-Lei, 2002. "A scheduling model and a solution algorithm for inter-city bus carriers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(9), pages 805-825, November.
    22. Stojkovic, Goran & Soumis, François & Desrosiers, Jacques & Solomon, Marius M., 2002. "An optimization model for a real-time flight scheduling problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(9), pages 779-788, November.
    23. Jeffery L. Kennington & Charles D. Nicholson, 2010. "The Uncapacitated Time-Space Fixed-Charge Network Flow Problem: An Empirical Investigation of Procedures for Arc Capacity Assignment," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 326-337, May.
    24. Zhao, Ai & Bard, Jonathan F. & Bickel, J. Eric, 2023. "A two-stage approach to aircraft recovery under uncertainty," Journal of Air Transport Management, Elsevier, vol. 111(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:31:y:1997:i:1:p:72-82. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.