IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v160y2025icp245-258.html
   My bibliography  Save this article

Flight, aircraft, and crew integrated recovery policies for airlines - A deep reinforcement learning approach

Author

Listed:
  • Wang, Qi
  • Mao, Jianing
  • Wen, Xin
  • Wallace, Stein W.
  • Deveci, Muhammet

Abstract

Airline schedules are easily affected by disruptions, leading to flight delays or (and) cancellations, causing significant financial losses to airline companies and inconvenience for passengers. When making recovery decisions, airlines need to simultaneously consider various entities, including flights, aircraft, and crew. This paper examines the integrated recovery policies for airlines to help re-schedule flights, re-route aircraft, and reassign crew members. To realize quick responses upon the occurrence of disruptions, an attention-based end-to-end deep reinforcement learning approach is proposed to learn a parameterized stochastic policy for the integrated airline recovery problem. Numerical experiments based on randomly generated disruption instances demonstrate that the proposed method outperforms the existing approaches and is applicable in realistic situations. The key insights obtained from our analyses are summarized as follows: (1) traditionally, among all disruption sources, it is most challenging and time-consuming to determine the recovery policies in reaction to aircraft delays and airport closures. However, the new approach developed in this study overcomes this difficulty and can provide high-quality recovery policies for aircraft delays and airport closures quickly. Thus, our work is especially valuable for airports and regions that suffer from frequent flight delays and closures, and can significantly improve their operational efficiency and service quality; (2) when traditional approaches are applied, the adoption of the well-known schedule robustness enhancement strategy ‘crew follow aircraft’ generally leads to high operations costs. Differently, our proposed approach can apply this strategy without encountering a significant cost growth. Therefore, airlines can fully leverage this strategy to gain additional advantages; (3) our developed new approach demonstrates high generality to accommodate various disruptions, which can benefit airlines and airports in the highly-volatile environment with various unpredictable events.

Suggested Citation

  • Wang, Qi & Mao, Jianing & Wen, Xin & Wallace, Stein W. & Deveci, Muhammet, 2025. "Flight, aircraft, and crew integrated recovery policies for airlines - A deep reinforcement learning approach," Transport Policy, Elsevier, vol. 160(C), pages 245-258.
  • Handle: RePEc:eee:trapol:v:160:y:2025:i:c:p:245-258
    DOI: 10.1016/j.tranpol.2024.11.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X24003482
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2024.11.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Anming & Wan, Yulai & Yang, Hangjun, 2019. "Impacts of high-speed rail on airlines, airports and regional economies: A survey of recent research," Transport Policy, Elsevier, vol. 81(C), pages 1-19.
    2. Thengvall, Benjamin G. & Yu, Gang & Bard, Jonathan F., 2001. "Multiple fleet aircraft schedule recovery following hub closures," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(4), pages 289-308, May.
    3. Wandelt, Sebastian & Xu, Yifan & Sun, Xiaoqian, 2023. "Measuring node importance in air transportation systems: On the quality of complex network estimations," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    4. Wen, Xin & Sun, Xuting & Sun, Yige & Yue, Xiaohang, 2021. "Airline crew scheduling: Models and algorithms," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    5. Wen, Xin & Ma, Hoi-Lam & Chung, Sai-Ho & Khan, Waqar Ahmed, 2020. "Robust airline crew scheduling with flight flying time variability," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    6. Gnutzmann, Hinnerk & Śpiewanowski, Piotr, 2023. "Can consumer rights improve on-time performance? Evidence from European Air Passenger Rights," Transport Policy, Elsevier, vol. 136(C), pages 155-168.
    7. Liang, Zhe & Xiao, Fan & Qian, Xiongwen & Zhou, Lei & Jin, Xianfei & Lu, Xuehua & Karichery, Sureshan, 2018. "A column generation-based heuristic for aircraft recovery problem with airport capacity constraints and maintenance flexibility," Transportation Research Part B: Methodological, Elsevier, vol. 113(C), pages 70-90.
    8. Huang, Hai-Jun & Xia, Tian & Tian, Qiong & Liu, Tian-Liang & Wang, Chenlan & Li, Daqing, 2020. "Transportation issues in developing China's urban agglomerations," Transport Policy, Elsevier, vol. 85(C), pages 1-22.
    9. Ding, Yida & Wandelt, Sebastian & Wu, Guohua & Xu, Yifan & Sun, Xiaoqian, 2023. "Towards efficient airline disruption recovery with reinforcement learning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    10. Shangyao Yan & Chung-Gee Lin, 1997. "Airline Scheduling for the Temporary Closure of Airports," Transportation Science, INFORMS, vol. 31(1), pages 72-82, February.
    11. Ladislav Lettovský & Ellis L. Johnson & George L. Nemhauser, 2000. "Airline Crew Recovery," Transportation Science, INFORMS, vol. 34(4), pages 337-348, November.
    12. Chang, Shaw-Ching, 2012. "A duty based approach in solving the aircrew recovery problem," Journal of Air Transport Management, Elsevier, vol. 19(C), pages 16-20.
    13. Fu, Xiaowen & Lei, Zheng & Liu, Shaoxuan & Wang, Kun & Yan, Jia, 2020. "On-time performance policy in the Chinese aviation market - An innovation or disruption?," Transport Policy, Elsevier, vol. 95(C), pages 14-23.
    14. Huang, Zhouchun & Luo, Xiaodong & Jin, Xianfei & Karichery, Sureshan, 2022. "An iterative cost-driven copy generation approach for aircraft recovery problem," European Journal of Operational Research, Elsevier, vol. 301(1), pages 334-348.
    15. Stephen J. Maher, 2016. "Solving the Integrated Airline Recovery Problem Using Column-and-Row Generation," Transportation Science, INFORMS, vol. 50(1), pages 216-239, February.
    16. Sai Ho Chung & Hoi Lam Ma & Hing Kai Chan, 2017. "Cascading Delay Risk of Airline Workforce Deployments with Crew Pairing and Schedule Optimization," Risk Analysis, John Wiley & Sons, vol. 37(8), pages 1443-1458, August.
    17. Geursen, Izaak L. & Santos, Bruno F. & Yorke-Smith, Neil, 2023. "Fleet planning under demand and fuel price uncertainty using actor–critic reinforcement learning," Journal of Air Transport Management, Elsevier, vol. 109(C).
    18. Michael F. Argüello & Jonathan F. Bard & Gang Yu, 1997. "A Grasp for Aircraft Routing in Response to Groundings and Delays," Journal of Combinatorial Optimization, Springer, vol. 1(3), pages 211-228, October.
    19. Choi, Tsan-Ming & Wen, Xin & Sun, Xuting & Chung, Sai-Ho, 2019. "The mean-variance approach for global supply chain risk analysis with air logistics in the blockchain technology era," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 178-191.
    20. Zhang, Yundi & Hu, Rong & Chen, Ruotian & Cai, Dong-ling & Jiang, Changmin, 2024. "Competition in cargo and passenger between high-speed rail and airlines—considering the vertical structure of transportation," Transport Policy, Elsevier, vol. 151(C), pages 120-133.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen, Xin & Chung, Sai-Ho & Ji, Ping & Sheu, Jiuh-Biing, 2022. "Individual scheduling approach for multi-class airline cabin crew with manpower requirement heterogeneity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    2. Huang, Zhouchun & Luo, Xiaodong & Jin, Xianfei & Karichery, Sureshan, 2022. "An iterative cost-driven copy generation approach for aircraft recovery problem," European Journal of Operational Research, Elsevier, vol. 301(1), pages 334-348.
    3. Wen, Xin & Sun, Xuting & Sun, Yige & Yue, Xiaohang, 2021. "Airline crew scheduling: Models and algorithms," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    4. Wen, Xin & Sun, Xuting & Ma, Hoi-Lam & Sun, Yige, 2022. "A column generation approach for operational flight scheduling and aircraft maintenance routing," Journal of Air Transport Management, Elsevier, vol. 105(C).
    5. Xin Wen & Sai-Ho Chung & Hoi-Lam Ma & Waqar Ahmed Khan, 2024. "Airline crew scheduling with sustainability enhancement by data analytics under circular economy," Annals of Operations Research, Springer, vol. 342(1), pages 959-985, November.
    6. Derui Wang & Yanfeng Wu & Jian-Qiang Hu & Miaomiao Liu & Peiwen Yu & Cheng Zhang & Yan Wu, 2019. "Flight Schedule Recovery: A Simulation-Based Approach," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(06), pages 1-19, December.
    7. Ding, Yida & Wandelt, Sebastian & Wu, Guohua & Xu, Yifan & Sun, Xiaoqian, 2023. "Towards efficient airline disruption recovery with reinforcement learning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    8. Schrotenboer, Albert H. & Wenneker, Rob & Ursavas, Evrim & Zhu, Stuart X., 2023. "Reliable reserve-crew scheduling for airlines," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 178(C).
    9. Ma, Hoi-Lam & Sun, Yige & Chung, Sai-Ho & Chan, Hing Kai, 2022. "Tackling uncertainties in aircraft maintenance routing: A review of emerging technologies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    10. Zhao, Ai & Bard, Jonathan F. & Bickel, J. Eric, 2023. "A two-stage approach to aircraft recovery under uncertainty," Journal of Air Transport Management, Elsevier, vol. 111(C).
    11. He, Yonghuan & Ma, Hoi-Lam & Park, Woo-Yong & Liu, Shi Qiang & Chung, Sai-Ho, 2023. "Maximizing robustness of aircraft routing with heterogeneous maintenance tasks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    12. Bard, Jonathan F. & Mohan, Dinesh Natarajan, 2008. "Reallocating arrival slots during a ground delay program," Transportation Research Part B: Methodological, Elsevier, vol. 42(2), pages 113-134, February.
    13. Jon D. Petersen & Gustaf Sölveling & John-Paul Clarke & Ellis L. Johnson & Sergey Shebalov, 2012. "An Optimization Approach to Airline Integrated Recovery," Transportation Science, INFORMS, vol. 46(4), pages 482-500, November.
    14. Xizi Qiao & Ying Yang & Yu Guo & Yong Jin & Shuaian Wang, 2024. "Optimal Routing and Scheduling of Flag State Control Officers in Maritime Transportation," Mathematics, MDPI, vol. 12(11), pages 1-23, May.
    15. Choi, Tsan-Ming & Wen, Xin & Sun, Xuting & Chung, Sai-Ho, 2019. "The mean-variance approach for global supply chain risk analysis with air logistics in the blockchain technology era," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 178-191.
    16. Ahmet Herekoğlu & Özgür Kabak, 2024. "Crew recovery optimization with deep learning and column generation for sustainable airline operation management," Annals of Operations Research, Springer, vol. 342(1), pages 399-427, November.
    17. Sinclair, Karine & Cordeau, Jean-François & Laporte, Gilbert, 2014. "Improvements to a large neighborhood search heuristic for an integrated aircraft and passenger recovery problem," European Journal of Operational Research, Elsevier, vol. 233(1), pages 234-245.
    18. Sun, Yige & Chung, Sai-Ho & Wen, Xin & Ma, Hoi-Lam, 2021. "Novel robotic job-shop scheduling models with deadlock and robot movement considerations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    19. Czerny, Achim I. & Fu, Xiaowen & Lei, Zheng & Oum, Tae H., 2021. "Post pandemic aviation market recovery: Experience and lessons from China," Journal of Air Transport Management, Elsevier, vol. 90(C).
    20. Delgado, Felipe & Sirhan, Cristóbal & Katscher, Mathias & Larrain, Homero, 2020. "Recovering from demand disruptions on an air cargo network," Journal of Air Transport Management, Elsevier, vol. 85(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:160:y:2025:i:c:p:245-258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.