IDEAS home Printed from https://ideas.repec.org/p/iuj/wpaper/ems_2012_18.html
   My bibliography  Save this paper

Disruption Management for Commercial Aviation

Author

Abstract

Airlines are constantly facing operational disruptions such as reduced airport capacity because of bad weather or strikes, unexpected aircraft unavailability due to mechanical failures, and delayed or cancelled flights. In view of this, ROADEF organized a worldwide challenge to explore the problems encountered in real world airlines when disruptions happen and find approaches to tackle them. In this paper, a new continuous time aircraft routing model is developed which can minimize aircraft delay cost accurately and efficiently handle all types of disruptions encountered in ROADEF. Applying a new decomposition algorithm, near optimal solutions for aircraft routing can be obtained. A passenger re-accommodation model is solved subsequently using the results from the aircraft routing model as input. Competitive results are obtained applying the proposed approach to instances provided by ROADEF.

Suggested Citation

  • Wenkai Li & Mark Wallace, 2012. "Disruption Management for Commercial Aviation," Working Papers EMS_2012_18, Research Institute, International University of Japan.
  • Handle: RePEc:iuj:wpaper:ems_2012_18
    as

    Download full text from publisher

    File URL: https://www.iuj.ac.jp/workingpapers/index.cfm?File=EMS_2012_18.pdf
    File Function: First version, 2012
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrew J. Schaefer & Ellis L. Johnson & Anton J. Kleywegt & George L. Nemhauser, 2005. "Airline Crew Scheduling Under Uncertainty," Transportation Science, INFORMS, vol. 39(3), pages 340-348, August.
    2. Thengvall, Benjamin G. & Yu, Gang & Bard, Jonathan F., 2001. "Multiple fleet aircraft schedule recovery following hub closures," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(4), pages 289-308, May.
    3. Cynthia Barnhart & Amy Cohn, 2004. "Airline Schedule Planning: Accomplishments and Opportunities," Manufacturing & Service Operations Management, INFORMS, vol. 6(1), pages 3-22, November.
    4. Shangyao Yan & Chung-Gee Lin, 1997. "Airline Scheduling for the Temporary Closure of Airports," Transportation Science, INFORMS, vol. 31(1), pages 72-82, February.
    5. Kalyan T. Talluri, 1996. "Swapping Applications in a Daily Airline Fleet Assignment," Transportation Science, INFORMS, vol. 30(3), pages 237-248, August.
    6. Shan Lan & John-Paul Clarke & Cynthia Barnhart, 2006. "Planning for Robust Airline Operations: Optimizing Aircraft Routings and Flight Departure Times to Minimize Passenger Disruptions," Transportation Science, INFORMS, vol. 40(1), pages 15-28, February.
    7. Cynthia Barnhart & Natashia L. Boland & Lloyd W. Clarke & Ellis L. Johnson & George L. Nemhauser & Rajesh G. Shenoi, 1998. "Flight String Models for Aircraft Fleeting and Routing," Transportation Science, INFORMS, vol. 32(3), pages 208-220, August.
    8. Jay M. Rosenberger & Ellis L. Johnson & George L. Nemhauser, 2003. "Rerouting Aircraft for Airline Recovery," Transportation Science, INFORMS, vol. 37(4), pages 408-421, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jon D. Petersen & Gustaf Sölveling & John-Paul Clarke & Ellis L. Johnson & Sergey Shebalov, 2012. "An Optimization Approach to Airline Integrated Recovery," Transportation Science, INFORMS, vol. 46(4), pages 482-500, November.
    2. Chunhua Gao & Ellis Johnson & Barry Smith, 2009. "Integrated Airline Fleet and Crew Robust Planning," Transportation Science, INFORMS, vol. 43(1), pages 2-16, February.
    3. Michelle Dunbar & Gary Froyland & Cheng-Lung Wu, 2012. "Robust Airline Schedule Planning: Minimizing Propagated Delay in an Integrated Routing and Crewing Framework," Transportation Science, INFORMS, vol. 46(2), pages 204-216, May.
    4. Xu, Yifan & Wandelt, Sebastian & Sun, Xiaoqian, 2021. "Airline integrated robust scheduling with a variable neighborhood search based heuristic," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 181-203.
    5. Uğur Arıkan & Sinan Gürel & M. Aktürk, 2016. "Integrated aircraft and passenger recovery with cruise time controllability," Annals of Operations Research, Springer, vol. 236(2), pages 295-317, January.
    6. Jane Lee & Lavanya Marla & Alexandre Jacquillat, 2020. "Dynamic Disruption Management in Airline Networks Under Airport Operating Uncertainty," Transportation Science, INFORMS, vol. 54(4), pages 973-997, July.
    7. Zhao, Ai & Bard, Jonathan F. & Bickel, J. Eric, 2023. "A two-stage approach to aircraft recovery under uncertainty," Journal of Air Transport Management, Elsevier, vol. 111(C).
    8. Sherali, Hanif D. & Bish, Ebru K. & Zhu, Xiaomei, 2006. "Airline fleet assignment concepts, models, and algorithms," European Journal of Operational Research, Elsevier, vol. 172(1), pages 1-30, July.
    9. Uğur Arıkan & Sinan Gürel & M. Selim Aktürk, 2016. "Integrated aircraft and passenger recovery with cruise time controllability," Annals of Operations Research, Springer, vol. 236(2), pages 295-317, January.
    10. Derui Wang & Yanfeng Wu & Jian-Qiang Hu & Miaomiao Liu & Peiwen Yu & Cheng Zhang & Yan Wu, 2019. "Flight Schedule Recovery: A Simulation-Based Approach," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(06), pages 1-19, December.
    11. Hanif D. Sherali & Ki-Hwan Bae & Mohamed Haouari, 2013. "An Integrated Approach for Airline Flight Selection and Timing, Fleet Assignment, and Aircraft Routing," Transportation Science, INFORMS, vol. 47(4), pages 455-476, November.
    12. Bard, Jonathan F. & Mohan, Dinesh Natarajan, 2008. "Reallocating arrival slots during a ground delay program," Transportation Research Part B: Methodological, Elsevier, vol. 42(2), pages 113-134, February.
    13. Borgonjon, Tessa & Maenhout, Broos, 2022. "An exact approach for the personnel task rescheduling problem with task retiming," European Journal of Operational Research, Elsevier, vol. 296(2), pages 465-484.
    14. Cynthia Barnhart & Timothy S. Kniker & Manoj Lohatepanont, 2002. "Itinerary-Based Airline Fleet Assignment," Transportation Science, INFORMS, vol. 36(2), pages 199-217, May.
    15. Mazhar Arıkan & Vinayak Deshpande & Milind Sohoni, 2013. "Building Reliable Air-Travel Infrastructure Using Empirical Data and Stochastic Models of Airline Networks," Operations Research, INFORMS, vol. 61(1), pages 45-64, February.
    16. Wang, Xiubin & Regan, Amelia, 2006. "Dynamic yield management when aircraft assignments are subject to swap," Transportation Research Part B: Methodological, Elsevier, vol. 40(7), pages 563-576, August.
    17. Naz Yeti̇moğlu, Yücel & Selim Aktürk, M., 2021. "Aircraft and passenger recovery during an aircraft’s unexpected unavailability," Journal of Air Transport Management, Elsevier, vol. 91(C).
    18. Abdelghany, Khaled F. & Abdelghany, Ahmed F. & Ekollu, Goutham, 2008. "An integrated decision support tool for airlines schedule recovery during irregular operations," European Journal of Operational Research, Elsevier, vol. 185(2), pages 825-848, March.
    19. Yan, Shangyao & Tang, Ching-Hui, 2009. "Inter-city bus scheduling under variable market share and uncertain market demands," Omega, Elsevier, vol. 37(1), pages 178-192, February.
    20. Birolini, Sebastian & Jacquillat, Alexandre, 2023. "Day-ahead aircraft routing with data-driven primary delay predictions," European Journal of Operational Research, Elsevier, vol. 310(1), pages 379-396.

    More about this item

    Keywords

    Disruption Management; ROADEF Challenge 2009; Airline;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iuj:wpaper:ems_2012_18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kazumi Imai, Office of Academic Affairs (email available below). General contact details of provider: https://edirc.repec.org/data/gsiujjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.