IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v154y2021icp129-144.html
   My bibliography  Save this article

The role of environmental concern in forming intentions for switching to electric scooters

Author

Listed:
  • Chen, Ching-Fu
  • Eccarius, Timo
  • Su, Pin-Chi

Abstract

Despite the growing market share of electric scooter-style motorcycles (e-scooters), only limited insight into the role of environmental concern with respect to their adoption is available. The purpose of this study was to investigate the psychological and contextual factors that associate with a switch from fossil fuel scooters to e-scooters. To model these factors, we conducted two studies in Taiwan. In Study 1, we elicited context-specific reasons for and against purchasing an e-scooter in a series of semi-structured interviews. In Study 2, we analyzed data from a survey among consumers (N = 320) using structural equation modelling. We consider the most important reasons from Study 1 together with environmental concerns (egoistic, altruistic, biospheric) in their relationship with intentions to switch to an e-scooter using the framework of Behavioral Reasoning Theory (BRT). In doing so, we provide unique insights for marketers and policymakers who seek to encourage the switch to this more sustainable form of mobility. We found environmental concerns among users of fossil-fueled scooters to be associated with attitude toward as well as reasons for and against switching to an e-scooter. But only a biospheric concern appeared to relate to both reason types and attitude, whereas egoistic and altruistic concerns only associated with reasons for the switch. The study also provides researchers and marketers in the e-scooter industry with a framework for understanding the role of environmental concern and contextual factors on purchase intention for a sustainable mobility product.

Suggested Citation

  • Chen, Ching-Fu & Eccarius, Timo & Su, Pin-Chi, 2021. "The role of environmental concern in forming intentions for switching to electric scooters," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 129-144.
  • Handle: RePEc:eee:transa:v:154:y:2021:i:c:p:129-144
    DOI: 10.1016/j.tra.2021.10.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856421002640
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2021.10.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Egbue, Ona & Long, Suzanna, 2012. "Barriers to widespread adoption of electric vehicles: An analysis of consumer attitudes and perceptions," Energy Policy, Elsevier, vol. 48(C), pages 717-729.
    2. Hung-Tai Tsou & Ja-Shen Chen & Cindy Yunhsin Chou & Tzu-Wen Chen, 2019. "Sharing Economy Service Experience and Its Effects on Behavioral Intention," Sustainability, MDPI, vol. 11(18), pages 1-25, September.
    3. Sahu, Aditya Kumar & Padhy, R.K. & Dhir, Amandeep, 2020. "Envisioning the future of behavioral decision-making: A systematic literature review of behavioral reasoning theory," Australasian marketing journal, Elsevier, vol. 28(4), pages 145-159.
    4. Mark Peterson & Travis Simkins, 2019. "Consumers' processing of mindful commercial car sharing," Business Strategy and the Environment, Wiley Blackwell, vol. 28(3), pages 457-465, March.
    5. Fred D. Davis & Richard P. Bagozzi & Paul R. Warshaw, 1989. "User Acceptance of Computer Technology: A Comparison of Two Theoretical Models," Management Science, INFORMS, vol. 35(8), pages 982-1003, August.
    6. Lange, Ian & Moro, Mirko & Traynor, Laura, 2014. "Green hypocrisy?: Environmental attitudes and residential space heating expenditure," Ecological Economics, Elsevier, vol. 107(C), pages 76-83.
    7. Gary C. Moore & Izak Benbasat, 1991. "Development of an Instrument to Measure the Perceptions of Adopting an Information Technology Innovation," Information Systems Research, INFORMS, vol. 2(3), pages 192-222, September.
    8. Johan Jansson, 2011. "Consumer eco‐innovation adoption: assessing attitudinal factors and perceived product characteristics," Business Strategy and the Environment, Wiley Blackwell, vol. 20(3), pages 192-210, March.
    9. Weinert, Jonathan X. & Ogden, Joan M. & Sperling, Dan & Burke, Andy, 2008. "The future of electric two-wheelers and electric vehicles in China," Institute of Transportation Studies, Working Paper Series qt0d05f8v9, Institute of Transportation Studies, UC Davis.
    10. Dongnyok Shim & Jungwoo Shin & So‐Yoon Kwak, 2018. "Modelling the consumer decision‐making process to identify key drivers and bottlenecks in the adoption of environmentally friendly products," Business Strategy and the Environment, Wiley Blackwell, vol. 27(8), pages 1409-1421, December.
    11. Westaby, James D., 2005. "Behavioral reasoning theory: Identifying new linkages underlying intentions and behavior," Organizational Behavior and Human Decision Processes, Elsevier, vol. 98(2), pages 97-120, November.
    12. Weinert, Jonathan & Ogden, Joan & Sperling, Dan & Burke, Andrew, 2008. "The future of electric two-wheelers and electric vehicles in China," Energy Policy, Elsevier, vol. 36(7), pages 2544-2555, July.
    13. Joyce Dargay & Dermot Gately & Martin Sommer, 2007. "Vehicle Ownership and Income Growth, Worldwide: 1960-2030," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 143-170.
    14. Avineri, Erel & Owen D. Waygood, E., 2013. "Applying valence framing to enhance the effect of information on transport-related carbon dioxide emissions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 48(C), pages 31-38.
    15. Jones, Luke R. & Cherry, Christopher R. & Vu, Tuan A. & Nguyen, Quang N., 2013. "The effect of incentives and technology on the adoption of electric motorcycles: A stated choice experiment in Vietnam," Transportation Research Part A: Policy and Practice, Elsevier, vol. 57(C), pages 1-11.
    16. Wells, Peter & Lin, Xiao, 2015. "Spontaneous emergence versus technology management in sustainable mobility transitions: Electric bicycles in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 371-383.
    17. Zeinab Rezvani & Johan Jansson & Maria Bengtsson, 2018. "Consumer motivations for sustainable consumption: The interaction of gain, normative and hedonic motivations on electric vehicle adoption," Business Strategy and the Environment, Wiley Blackwell, vol. 27(8), pages 1272-1283, December.
    18. Richins, Marsha L & Dawson, Scott, 1992. "A Consumer Values Orientation for Materialism and Its Measurement: Scale Development and Validation," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 19(3), pages 303-316, December.
    19. Mei‐Fang Chen, 2020. "The impacts of perceived moral obligation and sustainability self‐identity on sustainability development: A theory of planned behavior purchase intention model of sustainability‐labeled coffee and the," Business Strategy and the Environment, Wiley Blackwell, vol. 29(6), pages 2404-2417, September.
    20. Jonathan Weinert & Chaktan Ma & Christopher Cherry, 2007. "The transition to electric bikes in China: history and key reasons for rapid growth," Transportation, Springer, vol. 34(3), pages 301-318, May.
    21. Sovacool, Benjamin K. & Hirsh, Richard F., 2009. "Beyond batteries: An examination of the benefits and barriers to plug-in hybrid electric vehicles (PHEVs) and a vehicle-to-grid (V2G) transition," Energy Policy, Elsevier, vol. 37(3), pages 1095-1103, March.
    22. Zhang, Xian & Wang, Ke & Hao, Yu & Fan, Jing-Li & Wei, Yi-Ming, 2013. "The impact of government policy on preference for NEVs: The evidence from China," Energy Policy, Elsevier, vol. 61(C), pages 382-393.
    23. Hélène Bouscasse & Iragaël Joly & Patrick Bonnel, 2018. "How does environmental concern influence mode choice habits? A mediation analysis," Post-Print hal-01868333, HAL.
    24. Diamond, David, 2009. "The impact of government incentives for hybrid-electric vehicles: Evidence from US states," Energy Policy, Elsevier, vol. 37(3), pages 972-983, March.
    25. Chang, Hsin-Li & Wu, Shun-Cheng, 2008. "Exploring the vehicle dependence behind mode choice: Evidence of motorcycle dependence in Taipei," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(2), pages 307-320, February.
    26. Wu, Jih-Hwa & Wu, Chih-Wen & Lee, Chin-Tarn & Lee, Hsiao-Jung, 2015. "Green purchase intentions: An exploratory study of the Taiwanese electric motorcycle market," Journal of Business Research, Elsevier, vol. 68(4), pages 829-833.
    27. Diamantopoulos, Adamantios & Schlegelmilch, Bodo B. & Sinkovics, Rudolf R. & Bohlen, Greg M., 2003. "Can socio-demographics still play a role in profiling green consumers? A review of the evidence and an empirical investigation," Journal of Business Research, Elsevier, vol. 56(6), pages 465-480, June.
    28. Schuitema, Geertje & Anable, Jillian & Skippon, Stephen & Kinnear, Neale, 2013. "The role of instrumental, hedonic and symbolic attributes in the intention to adopt electric vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 48(C), pages 39-49.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Libin Chen & Qi Wu & Lin Jiang, 2022. "Impact of Environmental Concern on Ecological Purchasing Behavior: The Moderating Effect of Prosociality," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
    2. Timmer, Sebastian & Merfeld, Katrin & Henkel, Sven, 2023. "Exploring motivations for multimodal commuting: A hierarchical means-end chain analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).
    3. Chen, Ching-Fu & Lee, Chia-Han, 2023. "Investigating shared e-scooter users’ customer value co-creation behaviors and their antecedents: Perceived service quality and perceived value," Transport Policy, Elsevier, vol. 136(C), pages 147-154.
    4. Nguyen-Phuoc, Duy Quy & Nguyen, Nguyen An Ngoc & Tran, Phuong Thi Kim & Pham, Huong-Giang & Oviedo-Trespalacios, Oscar, 2023. "The influence of environmental concerns and psychosocial factors on electric motorbike switching intention in the global south," Journal of Transport Geography, Elsevier, vol. 113(C).
    5. Bhat, Furqan A. & Verma, Ashish, 2024. "Electric two-wheeler adoption in India – A discrete choice analysis of motivators and barriers affecting the potential electric two-wheeler buyers," Transport Policy, Elsevier, vol. 152(C), pages 118-131.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ye, Fei & Kang, Wanlin & Li, Lixu & Wang, Zhiqiang, 2021. "Why do consumers choose to buy electric vehicles? A paired data analysis of purchase intention configurations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 14-27.
    2. Yide Liu & Ivan Ka Wai Lai, 2020. "The Effects of Environmental Policy and the Perception of Electric Motorcycles on the Acceptance of Electric Motorcycles: An Empirical Study in Macau," SAGE Open, , vol. 10(1), pages 21582440198, January.
    3. Herberz, Mario & Hahnel, Ulf J.J. & Brosch, Tobias, 2020. "The importance of consumer motives for green mobility: A multi-modal perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 102-118.
    4. Patyal, Vishal Singh & Kumar, Ravi & Kushwah, Shiksha, 2021. "Modeling barriers to the adoption of electric vehicles: An Indian perspective," Energy, Elsevier, vol. 237(C).
    5. Kumar Shalender & Naman Sharma, 2021. "Using extended theory of planned behaviour (TPB) to predict adoption intention of electric vehicles in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 665-681, January.
    6. Roemer, Ellen & Henseler, Jörg, 2022. "The dynamics of electric vehicle acceptance in corporate fleets: Evidence from Germany," Technology in Society, Elsevier, vol. 68(C).
    7. Tanto Adi Waluyo & Muhammad Zudhy Irawan & Dewanti, 2022. "Adopting Electric Motorcycles for Ride-Hailing Services: Influential Factors from Driver’s Perspective," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    8. She, Zhen-Yu & Qing Sun, & Ma, Jia-Jun & Xie, Bai-Chen, 2017. "What are the barriers to widespread adoption of battery electric vehicles? A survey of public perception in Tianjin, China," Transport Policy, Elsevier, vol. 56(C), pages 29-40.
    9. Nguyen-Phuoc, Duy Quy & Nguyen, Nguyen An Ngoc & Tran, Phuong Thi Kim & Pham, Huong-Giang & Oviedo-Trespalacios, Oscar, 2023. "The influence of environmental concerns and psychosocial factors on electric motorbike switching intention in the global south," Journal of Transport Geography, Elsevier, vol. 113(C).
    10. Peng Cheng & Zhe Ouyang & Yang Liu, 0. "The effect of information overload on the intention of consumers to adopt electric vehicles," Transportation, Springer, vol. 0, pages 1-20.
    11. Zhaohua Wang & Xiaoyang Dong, 2016. "Determinants and policy implications of residents’ new energy vehicle purchases: the evidence from China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 155-173, May.
    12. Ingrid Moons & Patrick De Pelsmacker, 2015. "An Extended Decomposed Theory of Planned Behaviour to Predict the Usage Intention of the Electric Car: A Multi-Group Comparison," Sustainability, MDPI, vol. 7(5), pages 1-34, May.
    13. Peng Cheng & Zhe Ouyang & Yang Liu, 2020. "The effect of information overload on the intention of consumers to adopt electric vehicles," Transportation, Springer, vol. 47(5), pages 2067-2086, October.
    14. Jingnan Zhang & Shichun Xu & Zhengxia He & Chengze Li & Xiaona Meng, 2022. "Factors Influencing Adoption Intention for Electric Vehicles under a Subsidy Deduction: From Different City-Level Perspectives," Sustainability, MDPI, vol. 14(10), pages 1-24, May.
    15. Eccarius, Timo & Leung, Abraham & Shen, Chung-Wei & Burke, Matthew & Lu, Chung-Cheng, 2021. "Prospects for shared electric velomobility: Profiling potential adopters at a multi-campus university," Journal of Transport Geography, Elsevier, vol. 96(C).
    16. Shanyong Wang & Jin Fan & Dingtao Zhao & Shu Yang & Yuanguang Fu, 2016. "Predicting consumers’ intention to adopt hybrid electric vehicles: using an extended version of the theory of planned behavior model," Transportation, Springer, vol. 43(1), pages 123-143, January.
    17. Julian M. Müller, 2019. "Comparing Technology Acceptance for Autonomous Vehicles, Battery Electric Vehicles, and Car Sharing—A Study across Europe, China, and North America," Sustainability, MDPI, vol. 11(16), pages 1-17, August.
    18. Ziwen Ling & Christopher R. Cherry & Yi Wen, 2021. "Determining the Factors That Influence Electric Vehicle Adoption: A Stated Preference Survey Study in Beijing, China," Sustainability, MDPI, vol. 13(21), pages 1-22, October.
    19. Sovacool, Benjamin K. & Abrahamse, Wokje & Zhang, Long & Ren, Jingzheng, 2019. "Pleasure or profit? Surveying the purchasing intentions of potential electric vehicle adopters in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 69-81.
    20. Jun Li & Jiachao Shen & Bicen Jia, 2021. "Exploring Intention to Use Shared Electric Bicycles by the Extended Theory of Planned Behavior," Sustainability, MDPI, vol. 13(8), pages 1-13, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:154:y:2021:i:c:p:129-144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.