IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v133y2020icp325-336.html
   My bibliography  Save this article

Real-time prediction of public bike sharing system demand using generalized extreme value count model

Author

Listed:
  • Sohrabi, Soheil
  • Paleti, Rajesh
  • Balan, Lacramioara
  • Cetin, Mecit

Abstract

Public Bike Sharing Systems (BSSs) are becoming increasingly popular in recent times. Both the BSS operators and the customers can benefit from the large digital data portals that continuously record the state of the BSS. In this context, the current study developed generalized extreme value (GEV) count models that can predict hourly bike arrivals and departures at each station while accounting for time-of-day, weather, built environment, infrastructure, temporal, and spatial dependency factors. The proposed models were used to analyze the demand patterns in the Capital Bikeshare system and were found to predict the demand at both aggregate and disaggregate levels with reasonable accuracy. Specifically, the total demand in the entire system was predicted within 5% margin of error whereas 75% of the station-level arrival and departure predictions in the next one hour were within a margin of one from the observed counts. The proposed modeling system is useful (a) to BSS customers to better plan their travel based on expected bike and dock availability at the origin and destination ends of their BSS trips, and (b) to BSS operators to anticipate the future demand and optimize their rebalancing plans.

Suggested Citation

  • Sohrabi, Soheil & Paleti, Rajesh & Balan, Lacramioara & Cetin, Mecit, 2020. "Real-time prediction of public bike sharing system demand using generalized extreme value count model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 325-336.
  • Handle: RePEc:eee:transa:v:133:y:2020:i:c:p:325-336
    DOI: 10.1016/j.tra.2020.02.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856417316105
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2020.02.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chandra R. Bhat & Rajesh Paleti & Palvinder Singh, 2014. "A Spatial Multivariate Count Model For Firm Location Decisions," Journal of Regional Science, Wiley Blackwell, vol. 54(3), pages 462-502, June.
    2. Shaheen, Susan & Guzman, Stacey & Zhang, Hua, 2010. "Bikesharing in Europe, the Americas, and Asia: Past, Present, and Future," Institute of Transportation Studies, Working Paper Series qt79v822k5, Institute of Transportation Studies, UC Davis.
    3. Greene, William, 2008. "Functional forms for the negative binomial model for count data," Economics Letters, Elsevier, vol. 99(3), pages 585-590, June.
    4. Parkes, Stephen & Mardsen, Greg & Shaheen, Susan PhD & Cohen, Adam, 2013. "Understanding the Diffusion of Public Bikesharing Systems: Evidence from Europe and North America," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3qr9h2pr, Institute of Transportation Studies, UC Berkeley.
    5. Wafic El-Assi & Mohamed Salah Mahmoud & Khandker Nurul Habib, 2017. "Effects of built environment and weather on bike sharing demand: a station level analysis of commercial bike sharing in Toronto," Transportation, Springer, vol. 44(3), pages 589-613, May.
    6. Shaheen, Susan PhD & Cohen, Adam & Martin, Elliot PhD, 2013. "Public Bikesharing in North America: Early Operator Understanding and Emerging Trends," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt1x26m6z7, Institute of Transportation Studies, UC Berkeley.
    7. Gurmu, Shiferaw, 1998. "Generalized hurdle count data regression models," Economics Letters, Elsevier, vol. 58(3), pages 263-268, March.
    8. Susan Handy & Yan Xing & Theodore Buehler, 2010. "Factors associated with bicycle ownership and use: a study of six small U.S. cities," Transportation, Springer, vol. 37(6), pages 967-985, November.
    9. Shaheen, Susan A & Guzman, Stacey & Zhang, Hua, 2010. "Bikesharing in Europe, the Americas, and Asia: Past, Present and Future," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6qg8q6ft, Institute of Transportation Studies, UC Berkeley.
    10. Parkes, Stephen D. & Marsden, Greg & Shaheen, Susan A. & Cohen, Adam P., 2013. "Understanding the diffusion of public bikesharing systems: evidence from Europe and North America," Journal of Transport Geography, Elsevier, vol. 31(C), pages 94-103.
    11. Meghan Winters & Gavin Davidson & Diana Kao & Kay Teschke, 2011. "Motivators and deterrents of bicycling: comparing influences on decisions to ride," Transportation, Springer, vol. 38(1), pages 153-168, January.
    12. Schneider, Robert J. & Arnold, Lindsay S. & Ragland, David R., 2009. "A Pilot Model for Estimating Pedestrian Intersection Crossing Volumes," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3nr8h66j, Institute of Transportation Studies, UC Berkeley.
    13. Faghih-Imani, Ahmadreza & Eluru, Naveen & El-Geneidy, Ahmed M. & Rabbat, Michael & Haq, Usama, 2014. "How land-use and urban form impact bicycle flows: evidence from the bicycle-sharing system (BIXI) in Montreal," Journal of Transport Geography, Elsevier, vol. 41(C), pages 306-314.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bi, Hui & Gao, Hui & Li, Aoyong & Ye, Zhirui, 2024. "Using topic modeling to unravel the nuanced effects of built environment on bicycle-metro integrated usage," Transportation Research Part A: Policy and Practice, Elsevier, vol. 185(C).
    2. Shuo Zhang & Li Chen & Yingzi Li, 2021. "Shared Bicycle Distribution Connected to Subway Line Considering Citizens’ Morning Peak Social Characteristics for Urban Low-Carbon Development," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    3. Chang, Ximing & Wu, Jianjun & Sun, Huijun & Correia, Gonçalo Homem de Almeida & Chen, Jianhua, 2021. "Relocating operational and damaged bikes in free-floating systems: A data-driven modeling framework for level of service enhancement," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 235-260.
    4. Zhou, Yu & Chen, Yang & Liu, Shenyan & Kou, Gang, 2024. "Availability simulation and transfer prediction for bike sharing systems based on discrete event simulation," Socio-Economic Planning Sciences, Elsevier, vol. 94(C).
    5. Ding, Hongliang & Lu, Yuhuan & Sze, N.N. & Li, Haojie, 2022. "Effect of dockless bike-sharing scheme on the demand for London Cycle Hire at the disaggregate level using a deep learning approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 150-163.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Xinwei & Ji, Yanjie & Yuan, Yufei & Van Oort, Niels & Jin, Yuchuan & Hoogendoorn, Serge, 2020. "A comparison in travel patterns and determinants of user demand between docked and dockless bike-sharing systems using multi-sourced data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 148-173.
    2. Elżbieta Macioszek & Paulina Świerk & Agata Kurek, 2020. "The Bike-Sharing System as an Element of Enhancing Sustainable Mobility—A Case Study based on a City in Poland," Sustainability, MDPI, vol. 12(8), pages 1-29, April.
    3. Qing Yu & Weifeng Li & Dongyuan Yang & Yingkun Xie, 2020. "Policy Zoning for Efficient Land Utilization Based on Spatio-Temporal Integration between the Bicycle-Sharing Service and the Metro Transit," Sustainability, MDPI, vol. 13(1), pages 1-14, December.
    4. Cheng, Long & Yang, Junjian & Chen, Xuewu & Cao, Mengqiu & Zhou, Hang & Sun, Yu, 2020. "How could the station-based bike sharing system and the free-floating bike sharing system be coordinated?," Journal of Transport Geography, Elsevier, vol. 89(C).
    5. Wang, Jueyu & Lindsey, Greg, 2019. "Neighborhood socio-demographic characteristics and bike share member patterns of use," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    6. Morton, Craig & Kelley, Scott & Monsuur, Fredrik & Hui, Tianwen, 2021. "A spatial analysis of demand patterns on a bicycle sharing scheme: Evidence from London," Journal of Transport Geography, Elsevier, vol. 94(C).
    7. Caulfield, Brian & O'Mahony, Margaret & Brazil, William & Weldon, Peter, 2017. "Examining usage patterns of a bike-sharing scheme in a medium sized city," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 152-161.
    8. Saberi, Meead & Ghamami, Mehrnaz & Gu, Yi & Shojaei, Mohammad Hossein (Sam) & Fishman, Elliot, 2018. "Understanding the impacts of a public transit disruption on bicycle sharing mobility patterns: A case of Tube strike in London," Journal of Transport Geography, Elsevier, vol. 66(C), pages 154-166.
    9. Jinyi Zhou & Changyuan Jing & Xiangjun Hong & Tian Wu, 2019. "Winter Sabotage: The Three-Way Interactive Effect of Gender, Age, and Season on Public Bikesharing Usage," Sustainability, MDPI, vol. 11(11), pages 1-14, June.
    10. Wang, Mingshu & Zhou, Xiaolu, 2017. "Bike-sharing systems and congestion: Evidence from US cities," Journal of Transport Geography, Elsevier, vol. 65(C), pages 147-154.
    11. Suzanne Maas & Paraskevas Nikolaou & Maria Attard & Loukas Dimitriou, 2021. "Heat, Hills and the High Season: A Model-Based Comparative Analysis of Spatio-Temporal Factors Affecting Shared Bicycle Use in Three Southern European Islands," Sustainability, MDPI, vol. 13(6), pages 1-21, March.
    12. Morton, Craig, 2020. "The demand for cycle sharing: Examining the links between weather conditions, air quality levels, and cycling demand for regular and casual users," Journal of Transport Geography, Elsevier, vol. 88(C).
    13. Akbari Majid & Zarghamfard Moslem & Hajisharifi Arezoo & Amir Entekhabi Shahram & Goodarzipour Sadrallah, 2022. "Modelling the Obstacles to using Bicycle Sharing Systems in the Tehran Metropolis: A Structural Analysis," Quaestiones Geographicae, Sciendo, vol. 41(2), pages 109-124, June.
    14. Maas, Suzanne & Attard, Maria & Caruana, Mark Anthony, 2020. "Assessing spatial and social dimensions of shared bicycle use in a Southern European island context: The case of Las Palmas de Gran Canaria," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 81-97.
    15. Gu, Tianqi & Kim, Inhi & Currie, Graham, 2019. "Measuring immediate impacts of a new mass transit system on an existing bike-share system in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 20-39.
    16. Zhao, Jinbao & Deng, Wei & Song, Yan, 2014. "Ridership and effectiveness of bikesharing: The effects of urban features and system characteristics on daily use and turnover rate of public bikes in China," Transport Policy, Elsevier, vol. 35(C), pages 253-264.
    17. Gu, Tianqi & Kim, Inhi & Currie, Graham, 2019. "To be or not to be dockless: Empirical analysis of dockless bikeshare development in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 122-147.
    18. Hyungkyoo Kim, 2020. "Seasonal Impacts of Particulate Matter Levels on Bike Sharing in Seoul, South Korea," IJERPH, MDPI, vol. 17(11), pages 1-17, June.
    19. Zhou, Xiaolu & Wang, Mingshu & Li, Dongying, 2019. "Bike-sharing or taxi? Modeling the choices of travel mode in Chicago using machine learning," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    20. Lidong Zhu & Mujahid Ali & Elżbieta Macioszek & Mahdi Aghaabbasi & Amin Jan, 2022. "Approaching Sustainable Bike-Sharing Development: A Systematic Review of the Influence of Built Environment Features on Bike-Sharing Ridership," Sustainability, MDPI, vol. 14(10), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:133:y:2020:i:c:p:325-336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.