IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v126y2019icp1-23.html
   My bibliography  Save this article

Objective vs. subjective measures of street environments in pedestrian route choice behaviour: Discrepancy and correlates of non-concordance

Author

Listed:
  • Shatu, Farjana
  • Yigitcanlar, Tan
  • Bunker, Jonathan

Abstract

Difficulties in obtaining detailed street environment data is identified as a major obstacle in pedestrian route choice studies. Scholars have used either objectively or subjectively measured street environment data without testing their suitability as a substitute for each other in the route choice literature. This study aims to overcome these gaps by investigating the relevance of subjective data as a less-expensive proxy for objective data—together with identifying the factors affecting the degree of disconcordance between them. Subjective street environment data was collected from 178 pedestrians in Brisbane, Australia. Participants were intercepted and requested to draw their walking routes. They were asked to rate the importance of different street environment attributes influencing the chosen route. A range of objective attributes of these routes was derived through virtual audit and spatial analyses. The concordance of 13 seemingly related street environment variables was tested using ‘Kappa coefficient’ and ‘% agreement’ methods. Additionally, 13 multinomial logistic regression models were estimated, one for each variable, to identify different factors affecting the level of disconcordance. Results indicate a relatively poor agreement between objective and subjective attributes. However, an objective provisioning of some attributes can improve the perception of pedestrians about these attributes. Estimated regression models show that all groups are to some extent at-risk of being mismatched, suggesting the need for population-based policy interventions to improve perceptions. Findings highlight that subjective measures capture different construct of the street environment than those measured objectively, hence, using these two measures are not comparable.

Suggested Citation

  • Shatu, Farjana & Yigitcanlar, Tan & Bunker, Jonathan, 2019. "Objective vs. subjective measures of street environments in pedestrian route choice behaviour: Discrepancy and correlates of non-concordance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 1-23.
  • Handle: RePEc:eee:transa:v:126:y:2019:i:c:p:1-23
    DOI: 10.1016/j.tra.2019.05.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096585641830510X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2019.05.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kamruzzaman, Md. & Shatu, Farjana Mostafiz & Hine, Julian & Turrell, Gavin, 2015. "Commuting mode choice in transit oriented development: Disentangling the effects of competitive neighbourhoods, travel attitudes, and self-selection," Transport Policy, Elsevier, vol. 42(C), pages 187-196.
    2. Jean-Christophe Foltête & Amaud Piombini, 2010. "Deviations in Pedestrian Itineraries in Urban Areas: A Method to Assess the Role of Environmental Factors," Environment and Planning B, , vol. 37(4), pages 723-739, August.
    3. Samia Sharmin & Md. Kamruzzaman, 2018. "Meta-analysis of the relationships between space syntax measures and pedestrian movement," Transport Reviews, Taylor & Francis Journals, vol. 38(4), pages 524-550, July.
    4. Guo, Ren-Yong & Huang, Hai-Jun & Wong, S.C., 2012. "Route choice in pedestrian evacuation under conditions of good and zero visibility: Experimental and simulation results," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 669-686.
    5. Shanjiang Zhu & David Levinson, 2015. "Do People Use the Shortest Path? An Empirical Test of Wardrop’s First Principle," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-18, August.
    6. Shatu, Farjana & Yigitcanlar, Tan & Bunker, Jonathan, 2019. "Shortest path distance vs. least directional change: Empirical testing of space syntax and geographic theories concerning pedestrian route choice behaviour," Journal of Transport Geography, Elsevier, vol. 74(C), pages 37-52.
    7. Wei Zhu & Harry Timmermans, 2011. "Modeling pedestrian shopping behavior using principles of bounded rationality: model comparison and validation," Journal of Geographical Systems, Springer, vol. 13(2), pages 101-126, June.
    8. B Hillier & J Hanson & H Graham, 1987. "Ideas are in Things: An Application of the Space Syntax Method to Discovering House Genotypes," Environment and Planning B, , vol. 14(4), pages 363-385, December.
    9. Moiseeva, Anastasia & Timmermans, Harry, 2010. "Imputing relevant information from multi-day GPS tracers for retail planning and management using data fusion and context-sensitive learning," Journal of Retailing and Consumer Services, Elsevier, vol. 17(3), pages 189-199.
    10. Cao, Xinyu, 2006. "The Causal Relationship between the Built Environment and Personal Travel Choice: Evidence from Northern California," University of California Transportation Center, Working Papers qt07q5p340, University of California Transportation Center.
    11. Md. Kamruzzaman & Simon Washington & Douglas Baker & Wendy Brown & Billie Giles-Corti & Gavin Turrell, 2016. "Built environment impacts on walking for transport in Brisbane, Australia," Transportation, Springer, vol. 43(1), pages 53-77, January.
    12. Timo von Wirth & Adrienne Grêt-Regamey & Michael Stauffacher, 2015. "Mediating Effects Between Objective and Subjective Indicators of Urban Quality of Life: Testing Specific Models for Safety and Access," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 122(1), pages 189-210, May.
    13. Guo, Zhan & Loo, Becky P.Y., 2013. "Pedestrian environment and route choice: evidence from New York City and Hong Kong," Journal of Transport Geography, Elsevier, vol. 28(C), pages 124-136.
    14. Haghani, Milad & Sarvi, Majid, 2017. "Stated and revealed exit choices of pedestrian crowd evacuees," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 238-259.
    15. Calvin P Tribby & Harvey J Miller & Barbara B Brown & Carol M Werner & Ken R Smith, 2017. "Analyzing walking route choice through built environments using random forests and discrete choice techniques," Environment and Planning B, , vol. 44(6), pages 1145-1167, November.
    16. Buliung, R.N. & Larsen, K. & Faulkner, G.E.J. & Stone, M.R., 2013. "The "path" not taken: Exploring structural differences in mapped-versus shortest-network-path school travel routes," American Journal of Public Health, American Public Health Association, vol. 103(9), pages 1589-1596.
    17. Md. Kamruzzaman & Simon Washington & Douglas Baker & Wendy Brown & Billie Giles-Corti & Gavin Turrell, 2016. "Built environment impacts on walking for transport in Brisbane, Australia," Transportation, Springer, vol. 43(1), pages 53-77, January.
    18. Shatu, Farjana & Yigitcanlar, Tan, 2018. "Development and validity of a virtual street walkability audit tool for pedestrian route choice analysis—SWATCH," Journal of Transport Geography, Elsevier, vol. 70(C), pages 148-160.
    19. Tae-Hyoung Tommy Gim & Joonho Ko, 2017. "Maximum Likelihood and Firth Logistic Regression of the Pedestrian Route Choice," International Regional Science Review, , vol. 40(6), pages 616-637, November.
    20. Whalen, Kate E. & Páez, Antonio & Carrasco, Juan A., 2013. "Mode choice of university students commuting to school and the role of active travel," Journal of Transport Geography, Elsevier, vol. 31(C), pages 132-142.
    21. Xinyu Cao & Susan Handy & Patricia Mokhtarian, 2006. "The Influences of the Built Environment and Residential Self-Selection on Pedestrian Behavior: Evidence from Austin, TX," Transportation, Springer, vol. 33(1), pages 1-20, January.
    22. Kamruzzaman, Md. & Hine, Julian & Gunay, Banihan & Blair, Neale, 2011. "Using GIS to visualise and evaluate student travel behaviour," Journal of Transport Geography, Elsevier, vol. 19(1), pages 13-32.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eun Jung Kim & Suin Jin, 2023. "Walk Score and Neighborhood Walkability: A Case Study of Daegu, South Korea," IJERPH, MDPI, vol. 20(5), pages 1-12, February.
    2. Bo-Xun Huang & Shang-Chia Chiou & Wen-Ying Li, 2020. "Accessibility and Street Network Characteristics of Urban Public Facility Spaces: Equity Research on Parks in Fuzhou City Based on GIS and Space Syntax Model," Sustainability, MDPI, vol. 12(9), pages 1-19, April.
    3. Fernando Fonseca & Elisa Conticelli & George Papageorgiou & Paulo Ribeiro & Mona Jabbari & Simona Tondelli & Rui Ramos, 2021. "Levels and Characteristics of Utilitarian Walking in the Central Areas of the Cities of Bologna and Porto," Sustainability, MDPI, vol. 13(6), pages 1-22, March.
    4. Anwar, Muhammad Azfar & Dhir, Amandeep & Jabeen, Fauzia & Zhang, Qingyu & Siddiquei, Ahmad Nabeel, 2023. "Unconventional green transport innovations in the post-COVID-19 era. A trade-off between green actions and personal health protection," Journal of Business Research, Elsevier, vol. 155(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shatu, Farjana & Yigitcanlar, Tan & Bunker, Jonathan, 2019. "Shortest path distance vs. least directional change: Empirical testing of space syntax and geographic theories concerning pedestrian route choice behaviour," Journal of Transport Geography, Elsevier, vol. 74(C), pages 37-52.
    2. Shatu, Farjana & Yigitcanlar, Tan, 2018. "Development and validity of a virtual street walkability audit tool for pedestrian route choice analysis—SWATCH," Journal of Transport Geography, Elsevier, vol. 70(C), pages 148-160.
    3. Li, Jingjing & Auchincloss, Amy H. & Yang, Yong & Rodriguez, Daniel A. & Sánchez, Brisa N., 2020. "Neighborhood characteristics and transport walking: Exploring multiple pathways of influence using a structural equation modeling approach," Journal of Transport Geography, Elsevier, vol. 85(C).
    4. Eric T. H. Chan & Tim Schwanen & David Banister, 2021. "The role of perceived environment, neighbourhood characteristics, and attitudes in walking behaviour: evidence from a rapidly developing city in China," Transportation, Springer, vol. 48(1), pages 431-454, February.
    5. Kajosaari, Anna & Hasanzadeh, Kamyar & Kyttä, Marketta, 2019. "Residential dissonance and walking for transport," Journal of Transport Geography, Elsevier, vol. 74(C), pages 134-144.
    6. Cheng, Long & Shi, Kunbo & De Vos, Jonas & Cao, Mengqiu & Witlox, Frank, 2021. "Examining the spatially heterogeneous effects of the built environment on walking among older adults," Transport Policy, Elsevier, vol. 100(C), pages 21-30.
    7. Donggen Wang & Tao Lin, 2019. "Built environment, travel behavior, and residential self-selection: a study based on panel data from Beijing, China," Transportation, Springer, vol. 46(1), pages 51-74, February.
    8. Lingzhu Zhang & Alain JF Chiaradia, 2022. "Walking in the cities without ground, how 3d complex network volumetrics improve analysis," Environment and Planning B, , vol. 49(7), pages 1857-1874, September.
    9. Li, Jianling, 2018. "Residential and transit decisions: Insights from focus groups of neighborhoods around transit stations," Transport Policy, Elsevier, vol. 63(C), pages 1-9.
    10. Dimitris Milakis & Dimitrios Efthymiou & Constantinos Antoniou, 2017. "Built Environment, Travel Attitudes and Travel Behaviour: Quasi-Longitudinal Analysis of Links in the Case of Greeks Relocating from US to Greece," Sustainability, MDPI, vol. 9(10), pages 1-17, September.
    11. Mona Jabbari & Fernando Fonseca & Rui Ramos, 2021. "Accessibility and Connectivity Criteria for Assessing Walkability: An Application in Qazvin, Iran," Sustainability, MDPI, vol. 13(7), pages 1-18, March.
    12. Aghaabbasi, Mahdi & Shekari, Zohreh Asadi & Shah, Muhammad Zaly & Olakunle, Oloruntobi & Armaghani, Danial Jahed & Moeinaddini, Mehdi, 2020. "Predicting the use frequency of ride-sourcing by off-campus university students through random forest and Bayesian network techniques," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 262-281.
    13. Shahhoseini, Zahra & Sarvi, Majid, 2019. "Pedestrian crowd flows in shared spaces: Investigating the impact of geometry based on micro and macro scale measures," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 57-87.
    14. Alvaro Rodriguez-Valencia & Jose Agustin Vallejo-Borda & German A. Barrero & Hernan Alberto Ortiz-Ramirez, 2022. "Towards an enriched framework of service evaluation for pedestrian and bicyclist infrastructure: acknowledging the power of users’ perceptions," Transportation, Springer, vol. 49(3), pages 791-814, June.
    15. Lin, Tao & Wang, Donggen & Guan, Xiaodong, 2017. "The built environment, travel attitude, and travel behavior: Residential self-selection or residential determination?," Journal of Transport Geography, Elsevier, vol. 65(C), pages 111-122.
    16. Xinyu Cao & Patricia L. Mokhtarian, 2012. "The connections among accessibility, self- selection and walking behaviour: a case study of Northern California residents," Chapters, in: Karst T. Geurs & Kevin J. Krizek & Aura Reggiani (ed.), Accessibility Analysis and Transport Planning, chapter 5, pages 73-95, Edward Elgar Publishing.
    17. Jahanshahi, Kaveh & Jin, Ying & Williams, Ian, 2015. "Direct and indirect influences on employed adults’ travel in the UK: New insights from the National Travel Survey data 2002–2010," Transportation Research Part A: Policy and Practice, Elsevier, vol. 80(C), pages 288-306.
    18. Sharmin, Samia & Kamruzzaman, Md. & Haque, Md Mazharul, 2020. "The impact of topological properties of built environment on children independent mobility: A comparative study between discretionary vs. nondiscretionary trips in Dhaka," Journal of Transport Geography, Elsevier, vol. 83(C).
    19. Yuan Gao & Kun Liu & Peiling Zhou & Hongkun Xie, 2021. "The Effects of Residential Built Environment on Supporting Physical Activity Diversity in High-Density Cities: A Case Study in Shenzhen, China," IJERPH, MDPI, vol. 18(13), pages 1-16, June.
    20. Ettema, Dick & Nieuwenhuis, Roy, 2017. "Residential self-selection and travel behaviour: What are the effects of attitudes, reasons for location choice and the built environment?," Journal of Transport Geography, Elsevier, vol. 59(C), pages 146-155.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:126:y:2019:i:c:p:1-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.