IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v49y2022i7p1857-1874.html
   My bibliography  Save this article

Walking in the cities without ground, how 3d complex network volumetrics improve analysis

Author

Listed:
  • Lingzhu Zhang
  • Alain JF Chiaradia

Abstract

Pedestrian route choice, wayfinding behaviour and movement pattern research rely on objective spatial configuration model and analysis. In 3D indoor and outdoor multi-level buildings and urban built environments (IO-ML-BE), spatial configuration analysis allows to quantify and control for route choice and wayfinding complexity/difficulty. Our contribution is to compare the interaction of the level of definition (LOD) of indoor and outdoor multi-level pedestrian network spatial models and complexity metric analyses. Most studies are indoor or outdoor and oversimplify multi-level vertical connections. Using a novel open data set of a large-scale 3D centreline pedestrian network which implement transport geography 2D data model principles in 3D, nine spatial models and twelve spatial complexity analyses of a large-scale 3D IO-ML-BE are empirically tested with observed pedestrian movement patterns ( N = 17,307). Bivariate regression analyses show that the association with movement pattern increases steadily from R 2 ≈ 0.29 to 0.56 (space syntax, 2.5D) and from R 2 ≈ 0.54 to 0.72 (3D sDNA) as the 3D transport geography spatial model LOD and completeness increases. A multivariate stepwise regression analysis tests the bi-variate findings. A novel 3D hybrid angular-Euclidean analysis was tested for the objective description of 3D multi-level IO-ML-BE route choice and wayfinding complexity. The results suggest that pedestrian route choice, wayfinding and movement pattern analysis and prediction research in a multi-level IO-ML-BE should use high-definition 3D transport geography network spatial model and include interdependent outdoor and indoor spaces with detailed vertical transitions.

Suggested Citation

  • Lingzhu Zhang & Alain JF Chiaradia, 2022. "Walking in the cities without ground, how 3d complex network volumetrics improve analysis," Environment and Planning B, , vol. 49(7), pages 1857-1874, September.
  • Handle: RePEc:sae:envirb:v:49:y:2022:i:7:p:1857-1874
    DOI: 10.1177/23998083211070567
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/23998083211070567
    Download Restriction: no

    File URL: https://libkey.io/10.1177/23998083211070567?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Paul Stangl, 2019. "Overcoming flaws in permeability measures: modified route directness," Journal of Urbanism: International Research on Placemaking and Urban Sustainability, Taylor & Francis Journals, vol. 12(1), pages 1-14, January.
    2. repec:hal:wpaper:hal-03168957 is not listed on IDEAS
    3. Zheng Tan & Charlie Q.L. Xue, 2014. "Walking as a Planned Activity: Elevated Pedestrian Network and Urban Design Regulation in Hong Kong," Journal of Urban Design, Taylor & Francis Journals, vol. 19(5), pages 722-744, December.
    4. Stephen Marshall & Jorge Gil & Karl Kropf & Martin Tomko & Lucas Figueiredo, 2018. "Street Network Studies: from Networks to Models and their Representations," Networks and Spatial Economics, Springer, vol. 18(3), pages 735-749, September.
    5. Guo, Zhan & Loo, Becky P.Y., 2013. "Pedestrian environment and route choice: evidence from New York City and Hong Kong," Journal of Transport Geography, Elsevier, vol. 28(C), pages 124-136.
    6. Samia Sharmin & Md. Kamruzzaman, 2018. "Meta-analysis of the relationships between space syntax measures and pedestrian movement," Transport Reviews, Taylor & Francis Journals, vol. 38(4), pages 524-550, July.
    7. Roddy M. Grieves & Selim Jedidi-Ayoub & Karyna Mishchanchuk & Anyi Liu & Sophie Renaudineau & Kate J. Jeffery, 2020. "The place-cell representation of volumetric space in rats," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    8. Anna Charisse Farr & Tristan Kleinschmidt & Prasad Yarlagadda & Kerrie Mengersen, 2012. "Wayfinding: A simple concept, a complex process," Transport Reviews, Taylor & Francis Journals, vol. 32(6), pages 715-743, July.
    9. Shatu, Farjana & Yigitcanlar, Tan & Bunker, Jonathan, 2019. "Shortest path distance vs. least directional change: Empirical testing of space syntax and geographic theories concerning pedestrian route choice behaviour," Journal of Transport Geography, Elsevier, vol. 74(C), pages 37-52.
    10. Im Sik Cho & Zdravko Trivic & Ivan Nasution, 2015. "Towards an Integrated Urban Space Framework for Emerging Urban Conditions in a High-density Context," Journal of Urban Design, Taylor & Francis Journals, vol. 20(2), pages 147-168, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mona Jabbari & Fernando Fonseca & Rui Ramos, 2021. "Accessibility and Connectivity Criteria for Assessing Walkability: An Application in Qazvin, Iran," Sustainability, MDPI, vol. 13(7), pages 1-18, March.
    2. Sevtsuk, Andres & Basu, Rounaq, 2022. "The role of turns in pedestrian route choice: A clarification," Journal of Transport Geography, Elsevier, vol. 102(C).
    3. Shatu, Farjana & Yigitcanlar, Tan & Bunker, Jonathan, 2019. "Objective vs. subjective measures of street environments in pedestrian route choice behaviour: Discrepancy and correlates of non-concordance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 1-23.
    4. Crispin H. V. Cooper & Ian Harvey & Scott Orford & Alain J. F. Chiaradia, 2021. "Using multiple hybrid spatial design network analysis to predict longitudinal effect of a major city centre redevelopment on pedestrian flows," Transportation, Springer, vol. 48(2), pages 643-672, April.
    5. Shatu, Farjana & Yigitcanlar, Tan & Bunker, Jonathan, 2019. "Shortest path distance vs. least directional change: Empirical testing of space syntax and geographic theories concerning pedestrian route choice behaviour," Journal of Transport Geography, Elsevier, vol. 74(C), pages 37-52.
    6. Barber, Lachlan B., 2020. "Governing uneven mobilities: Walking and hierarchized circulation in Hong Kong," Journal of Transport Geography, Elsevier, vol. 82(C).
    7. Basu, Rounaq & Sevtsuk, Andres, 2022. "How do street attributes affect willingness-to-walk? City-wide pedestrian route choice analysis using big data from Boston and San Francisco," Transportation Research Part A: Policy and Practice, Elsevier, vol. 163(C), pages 1-19.
    8. Jan Ženka & Jan Macháček & Pavel Michna & Pavel Kořízek, 2021. "Navigational Needs and Preferences of Hospital Patients and Visitors: What Prospects for Smart Technologies?," IJERPH, MDPI, vol. 18(3), pages 1-20, January.
    9. Dimitrios TSIOTAS & Nikolaos AXELIS & Serafeim POLYZOS, 2022. "Detecting City-Dipoles In Greece Based On Intercity Commuting," Regional Science Inquiry, Hellenic Association of Regional Scientists, vol. 0(1), pages 11-30, June.
    10. Ahmad Adeel & Bruno Notteboom & Ansar Yasar & Kris Scheerlinck & Jeroen Stevens, 2021. "Sustainable Streetscape and Built Environment Designs around BRT Stations: A Stated Choice Experiment Using 3D Visualizations," Sustainability, MDPI, vol. 13(12), pages 1-21, June.
    11. Saskia Kuliga & Martin Berwig & Martina Roes, 2021. "Wayfinding in People with Alzheimer’s Disease: Perspective Taking and Architectural Cognition—A Vision Paper on Future Dementia Care Research Opportunities," Sustainability, MDPI, vol. 13(3), pages 1-24, January.
    12. Alice Rauber & Romulo Krafta, 2023. "A Quanti-Qualitative Approach to Alexander’s Harmony-Seeking Computations," Urban Planning, Cogitatio Press, vol. 8(3), pages 246-258.
    13. Zhou, You & Zhang, Lingzhu & JF Chiaradia, Alain, 2022. "Estimating wider economic impacts of transport infrastructure Investment: Evidence from accessibility disparity in Hong Kong," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 220-235.
    14. Sharmin, Samia & Kamruzzaman, Md. & Haque, Md Mazharul, 2020. "The impact of topological properties of built environment on children independent mobility: A comparative study between discretionary vs. nondiscretionary trips in Dhaka," Journal of Transport Geography, Elsevier, vol. 83(C).
    15. Li, Siqiao & Zhu, Xiaoning & Shang, Pan & Wang, Li & Li, Tianqi, 2024. "Scheduling shared passenger and freight transport for an underground logistics system," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
    16. Dorsa Alipour & Hussein Dia, 2023. "A Systematic Review of the Role of Land Use, Transport, and Energy-Environment Integration in Shaping Sustainable Cities," Sustainability, MDPI, vol. 15(8), pages 1-29, April.
    17. Susanne Ulrich & Eva Grill & Virginia L Flanagin, 2019. "Who gets lost and why: A representative cross-sectional survey on sociodemographic and vestibular determinants of wayfinding strategies," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-16, January.
    18. Wu, Fangning & Li, Wenjing & Qiu, Waishan, 2023. "Examining non-linear relationship between streetscape features and propensity of walking to school in Hong Kong using machine learning techniques," Journal of Transport Geography, Elsevier, vol. 113(C).
    19. Aston, Laura & Currie, Graham & Kamruzzaman, Md. & Delbosc, Alexa & Teller, David, 2020. "Study design impacts on built environment and transit use research," Journal of Transport Geography, Elsevier, vol. 82(C).
    20. Kimon Krenz & Ashley Dhanani & Rosemary R. C. McEachan & Kuldeep Sohal & John Wright & Laura Vaughan, 2023. "Linking the Urban Environment and Health: An Innovative Methodology for Measuring Individual-Level Environmental Exposures," IJERPH, MDPI, vol. 20(3), pages 1-22, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:49:y:2022:i:7:p:1857-1874. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.