IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v119y2020ics1364032119307774.html
   My bibliography  Save this article

The cultural barriers to a low-carbon future: A review of six mobility and energy transitions across 28 countries

Author

Listed:
  • Sovacool, Benjamin K.
  • Griffiths, Steve

Abstract

This review focuses on how culture can complicate and impede attempts at promoting more efficient, more sustainable, and often more affordable forms of mobility as well as energy use in homes and buildings. In simpler terms: it illustrates the cultural barriers to a low-carbon, low-energy future across 28 countries. Rather than focus on energy supply, it deals intently with energy end-use, demand, and consumption. In terms of low-carbon transport and mobility, it examines the cultural barriers to aggressive driving, speeding, and eco-driving; automated vehicles; and ridesharing and carpooling. In terms of cooking and building energy use, it examines the cultural barriers to solar home systems, improved cookstoves, and energy efficient heating, cooling, and hot water practices. For each case, the review synthesizes a wide range of studies showing that culture can operate as a salient but often unacknowledged barrier to low-carbon transitions as well as sustainability transitions more generally. The paper concludes with recommendations aimed at catalyzing the effectiveness and efficiency with which policymakers, researchers and practitioners are able to research, develop, demonstrate and deploy culturally appropriate technologies and policies for a low-carbon transition.

Suggested Citation

  • Sovacool, Benjamin K. & Griffiths, Steve, 2020. "The cultural barriers to a low-carbon future: A review of six mobility and energy transitions across 28 countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
  • Handle: RePEc:eee:rensus:v:119:y:2020:i:c:s1364032119307774
    DOI: 10.1016/j.rser.2019.109569
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119307774
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.109569?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khandelwal, Meena & Hill, Matthew E. & Greenough, Paul & Anthony, Jerry & Quill, Misha & Linderman, Marc & Udaykumar, H.S., 2017. "Why Have Improved Cook-Stove Initiatives in India Failed?," World Development, Elsevier, vol. 92(C), pages 13-27.
    2. Bardazzi, Rossella & Pazienza, Maria Grazia, 2017. "Switch off the light, please! Energy use, aging population and consumption habits," Energy Economics, Elsevier, vol. 65(C), pages 161-171.
    3. Clewlow, Regina R. & Mishra, Gouri S., 2017. "Disruptive Transportation: The Adoption, Utilization, and Impacts of Ride-Hailing in the United States," Institute of Transportation Studies, Working Paper Series qt82w2z91j, Institute of Transportation Studies, UC Davis.
    4. Sovacool, Benjamin K. & Axsen, Jonn, 2018. "Functional, symbolic and societal frames for automobility: Implications for sustainability transitions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 730-746.
    5. Stephenson, Janet & Barton, Barry & Carrington, Gerry & Gnoth, Daniel & Lawson, Rob & Thorsnes, Paul, 2010. "Energy cultures: A framework for understanding energy behaviours," Energy Policy, Elsevier, vol. 38(10), pages 6120-6129, October.
    6. Demirbas, Ayhan, 2009. "Political, economic and environmental impacts of biofuels: A review," Applied Energy, Elsevier, vol. 86(Supplemen), pages 108-117, November.
    7. Labanca, Nicola & Bertoldi, Paolo, 2018. "Beyond energy efficiency and individual behaviours: policy insights from social practice theories," Energy Policy, Elsevier, vol. 115(C), pages 494-502.
    8. Firnkorn, Jörg & Müller, Martin, 2011. "What will be the environmental effects of new free-floating car-sharing systems? The case of car2go in Ulm," Ecological Economics, Elsevier, vol. 70(8), pages 1519-1528, June.
    9. Sovacool, Benjamin K., 2009. "The cultural barriers to renewable energy and energy efficiency in the United States," Technology in Society, Elsevier, vol. 31(4), pages 365-373.
    10. Sovacool, Benjamin K. & D'Agostino, Anthony L. & Jain Bambawale, Malavika, 2011. "The socio-technical barriers to Solar Home Systems (SHS) in Papua New Guinea: "Choosing pigs, prostitutes, and poker chips over panels"," Energy Policy, Elsevier, vol. 39(3), pages 1532-1542, March.
    11. Shaheen, Susan PhD, 2018. "Shared Mobility: The Potential of Ride Hailing and Pooling," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt46p6n2sk, Institute of Transportation Studies, UC Berkeley.
    12. Das, Karabee & Pradhan, Greeshma & Nonhebel, Sanderine, 2019. "Human energy and time spent by women using cooking energy systems: A case study of Nepal," Energy, Elsevier, vol. 182(C), pages 493-501.
    13. Wadud, Zia & MacKenzie, Don & Leiby, Paul, 2016. "Help or hindrance? The travel, energy and carbon impacts of highly automated vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 1-18.
    14. Steers, Richard M. & Meyer, Alan D. & Sanchez-Runde, Carlos J., 2008. "National culture and the adoption of new technologies," Journal of World Business, Elsevier, vol. 43(3), pages 255-260, July.
    15. Azim Shariff & Jean-François Bonnefon & Iyad Rahwan, 2017. "Psychological roadblocks to the adoption of self-driving vehicles," Nature Human Behaviour, Nature, vol. 1(10), pages 694-696, October.
    16. Painuly, J.P, 2001. "Barriers to renewable energy penetration; a framework for analysis," Renewable Energy, Elsevier, vol. 24(1), pages 73-89.
    17. Sovacool, Benjamin K. & Drupady, Ira Martina, 2011. "Summoning earth and fire: The energy development implications of Grameen Shakti (GS) in Bangladesh," Energy, Elsevier, vol. 36(7), pages 4445-4459.
    18. Aune, Margrethe & Godbolt, Åsne Lund & Sørensen, Knut H. & Ryghaug, Marianne & Karlstrøm, Henrik & Næss, Robert, 2016. "Concerned consumption. Global warming changing household domestication of energy," Energy Policy, Elsevier, vol. 98(C), pages 290-297.
    19. Hudson, John & Orviska, Marta & Hunady, Jan, 2019. "People’s attitudes to autonomous vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 164-176.
    20. Vania Vigolo & Rezarta Sallaku & Federico Testa, 2018. "Drivers and Barriers to Clean Cooking: A Systematic Literature Review from a Consumer Behavior Perspective," Sustainability, MDPI, vol. 10(11), pages 1-21, November.
    21. Chen, Yuche & Gonder, Jeffrey & Young, Stanley & Wood, Eric, 2019. "Quantifying autonomous vehicles national fuel consumption impacts: A data-rich approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 134-145.
    22. Yaqoot, Mohammed & Diwan, Parag & Kandpal, Tara C., 2016. "Review of barriers to the dissemination of decentralized renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 477-490.
    23. Wilhite, Harold & Nakagami, Hidetoshi & Masuda, Takashi & Yamaga, Yukiko & Haneda, Hiroshi, 1996. "A cross-cultural analysis of household energy use behaviour in Japan and Norway," Energy Policy, Elsevier, vol. 24(9), pages 795-803, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xing, Yingying & Zhou, Huiyu & Han, Xiao & Zhang, Meng & Lu, Jian, 2022. "What influences vulnerable road users’ perceptions of autonomous vehicles? A comparative analysis of the 2017 and 2019 Pittsburgh surveys," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    2. Liu, Peng & Ma, Yanjiao & Zuo, Yaqing, 2019. "Self-driving vehicles: Are people willing to trade risks for environmental benefits?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 125(C), pages 139-149.
    3. Hugo Lucas & Ruth Carbajo & Tomoo Machiba & Evgeny Zhukov & Luisa F. Cabeza, 2021. "Improving Public Attitude towards Renewable Energy," Energies, MDPI, vol. 14(15), pages 1-16, July.
    4. Rejali, Sina & Aghabayk, Kayvan & Esmaeli, Saeed & Shiwakoti, Nirajan, 2023. "Comparison of technology acceptance model, theory of planned behavior, and unified theory of acceptance and use of technology to assess a priori acceptance of fully automated vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 168(C).
    5. Shiraki, Hiroto & Matsumoto, Ken'ichi & Shigetomi, Yosuke & Ehara, Tomoki & Ochi, Yuki & Ogawa, Yuki, 2020. "Factors affecting CO2 emissions from private automobiles in Japan: The impact of vehicle occupancy," Applied Energy, Elsevier, vol. 259(C).
    6. Murshed, Muntasir, 2019. "Trade Liberalization Policies and Renewable Energy Transition in Low and Middle-Income Countries? An Instrumental Variable Approach," MPRA Paper 97075, University Library of Munich, Germany.
    7. Joshi, Lalita & Choudhary, Deepak & Kumar, Praveen & Venkateswaran, Jayendran & Solanki, Chetan S., 2019. "Does involvement of local community ensure sustained energy access? A critical review of a solar PV technology intervention in rural India," World Development, Elsevier, vol. 122(C), pages 272-281.
    8. Shahriyar Nasirov & Carlos Silva & Claudio A. Agostini, 2015. "Investors’ Perspectives on Barriers to the Deployment of Renewable Energy Sources in Chile," Energies, MDPI, vol. 8(5), pages 1-21, April.
    9. Goggins, Gary & Rau, Henrike & Moran, Paul & Fahy, Frances & Goggins, Jamie, 2022. "The role of culture in advancing sustainable energy policy and practice," Energy Policy, Elsevier, vol. 167(C).
    10. Pi, Dawei & Xue, Pengyu & Wang, Weihua & Xie, Boyuan & Wang, Hongliang & Wang, Xianhui & Yin, Guodong, 2023. "Automotive platoon energy-saving: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    11. Circella, Giovanni & Alemi, Farzad & Tiedeman, Kate & Handy, Susan & Mokhtarian, Patricia, 2018. "The Adoption of Shared Mobility in California and Its Relationship with Other Components of Travel Behavior," Institute of Transportation Studies, Working Paper Series qt1kq5d07p, Institute of Transportation Studies, UC Davis.
    12. Roberto Battistini & Luca Mantecchini & Maria Nadia Postorino, 2020. "Users’ Acceptance of Connected and Automated Shuttles for Tourism Purposes: A Survey Study," Sustainability, MDPI, vol. 12(23), pages 1-17, December.
    13. Lo Piano, S. & Smith, S.T., 2022. "Energy demand and its temporal flexibility: Approaches, criticalities and ways forward," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    14. Chaiyapa, Warathida & Esteban, Miguel & Kameyama, Yasuko, 2018. "Why go green? Discourse analysis of motivations for Thailand's oil and gas companies to invest in renewable energy," Energy Policy, Elsevier, vol. 120(C), pages 448-459.
    15. Yoon-Young Chun & Mitsutaka Matsumoto & Kiyotaka Tahara & Kenichiro Chinen & Hideki Endo, 2019. "Exploring Factors Affecting Car Sharing Use Intention in the Southeast-Asia Region: A Case Study in Java, Indonesia," Sustainability, MDPI, vol. 11(18), pages 1-26, September.
    16. Marina Blohm, 2021. "An Enabling Framework to Support the Sustainable Energy Transition at the National Level," Sustainability, MDPI, vol. 13(7), pages 1-20, March.
    17. Wadud, Zia & Mattioli, Giulio, 2021. "Fully automated vehicles: A cost-based analysis of the share of ownership and mobility services, and its socio-economic determinants," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 228-244.
    18. Karatayev, Marat & Hall, Stephen & Kalyuzhnova, Yelena & Clarke, Michèle L., 2016. "Renewable energy technology uptake in Kazakhstan: Policy drivers and barriers in a transitional economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 120-136.
    19. Yaqoot, Mohammed & Diwan, Parag & Kandpal, Tara C., 2017. "Financial attractiveness of decentralized renewable energy systems – A case of the central Himalayan state of Uttarakhand in India," Renewable Energy, Elsevier, vol. 101(C), pages 973-991.
    20. Marc Kuhn & Viola Marquardt & Sarah Selinka, 2021. "“Is Sharing Really Caring?”: The Role of Environmental Concern and Trust Reflecting Usage Intention of “Station-Based” and “Free-Floating”—Carsharing Business Models," Sustainability, MDPI, vol. 13(13), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:119:y:2020:i:c:s1364032119307774. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.