Scalable Rejection Sampling for Bayesian Hierarchical Models
Author
Abstract
Suggested Citation
DOI: 10.1287/mksc.2014.0901
Download full text from publisher
References listed on IDEAS
- John D. C. Little, 1970. "Models and Managers: The Concept of a Decision Calculus," Management Science, INFORMS, vol. 16(8), pages 466-485, April.
- Peter E. Rossi & Greg M. Allenby, 2003. "Bayesian Statistics and Marketing," Marketing Science, INFORMS, vol. 22(3), pages 304-328, July.
- Bates, Douglas & Eddelbuettel, Dirk, 2013. "Fast and Elegant Numerical Linear Algebra Using the RcppEigen Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 52(i05).
- Eddelbuettel, Dirk & Francois, Romain, 2011. "Rcpp: Seamless R and C++ Integration," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 40(i08).
- Braun, Michael, 2014. "trustOptim: An R Package for Trust Region Optimization with Sparse Hessians," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 60(i04).
- Mark Girolami & Ben Calderhead, 2011. "Riemann manifold Langevin and Hamiltonian Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(2), pages 123-214, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Roozbeh Irani-Kermani & Edward C. Jaenicke & Ardalan Mirshani, 2023. "Accommodating heterogeneity in brand loyalty estimation: application to the U.S. beer retail market," Journal of Marketing Analytics, Palgrave Macmillan, vol. 11(4), pages 820-835, December.
- Pradeep Chintagunta & Dominique M. Hanssens & John R. Hauser, 2016. "Editorial—Marketing Science and Big Data," Marketing Science, INFORMS, vol. 35(3), pages 341-342, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Martinetti, Davide & Geniaux, Ghislain, 2017. "Approximate likelihood estimation of spatial probit models," Regional Science and Urban Economics, Elsevier, vol. 64(C), pages 30-45.
- Marchese, Scott & Diao, Guoqing, 2018. "Joint regression analysis of mixed-type outcome data via efficient scores," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 156-170.
- Assaf, A. George & Tsionas, Mike & Oh, Haemoon, 2018. "The time has come: Toward Bayesian SEM estimation in tourism research," Tourism Management, Elsevier, vol. 64(C), pages 98-109.
- Michael Platzer & Thomas Reutterer, 2016. "Ticking Away the Moments: Timing Regularity Helps to Better Predict Customer Activity," Marketing Science, INFORMS, vol. 35(5), pages 779-799, September.
- Lydia Simon & Jost Adler, 2022. "Worth the effort? Comparison of different MCMC algorithms for estimating the Pareto/NBD model," Journal of Business Economics, Springer, vol. 92(4), pages 707-733, May.
- Jos'e Vin'icius de Miranda Cardoso & Jiaxi Ying & Daniel Perez Palomar, 2020. "Algorithms for Learning Graphs in Financial Markets," Papers 2012.15410, arXiv.org.
- Wilson J. Wright & Peter N. Neitlich & Alyssa E. Shiel & Mevin B. Hooten, 2022. "Mechanistic spatial models for heavy metal pollution," Environmetrics, John Wiley & Sons, Ltd., vol. 33(8), December.
- repec:hum:wpaper:sfb649dp2007-059 is not listed on IDEAS
- Ranjan, Rakesh & Sen, Rijji & Upadhyay, Satyanshu K., 2021. "Bayes analysis of some important lifetime models using MCMC based approaches when the observations are left truncated and right censored," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
- Ioannis Bournakis & Mike Tsionas, 2024.
"A Non‐parametric Estimation of Productivity with Idiosyncratic and Aggregate Shocks: The Role of Research and Development (R&D) and Corporate Tax,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(3), pages 641-671, June.
- Bournakis, Ioannis & Tsionas, Mike G., 2023. "A Non-Parametric Estimation of Productivity with Idiosyncratic and Aggregate Shocks: The Role of Research and Development (R&D) and Corporate Tax," MPRA Paper 118100, University Library of Munich, Germany.
- Chen, Zhongfei & Wanke, Peter & Tsionas, Mike G., 2018. "Assessing the strategic fit of potential M&As in Chinese banking: A novel Bayesian stochastic frontier approach," Economic Modelling, Elsevier, vol. 73(C), pages 254-263.
- Atkinson, Scott E. & Tsionas, Mike G., 2021. "Generalized estimation of productivity with multiple bad outputs: The importance of materials balance constraints," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1165-1186.
- Caroline Khan & Mike G. Tsionas, 2021. "Constraints in models of production and cost via slack-based measures," Empirical Economics, Springer, vol. 61(6), pages 3347-3374, December.
- McCown, R. L., 2002. "Changing systems for supporting farmers' decisions: problems, paradigms, and prospects," Agricultural Systems, Elsevier, vol. 74(1), pages 179-220, October.
- Jia Liu & John M. Maheu & Yong Song, 2024.
"Identification and forecasting of bull and bear markets using multivariate returns,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 723-745, August.
- Liu, Jia & Maheu, John M & Song, Yong, 2023. "Identification and Forecasting of Bull and Bear Markets using Multivariate Returns," MPRA Paper 119515, University Library of Munich, Germany.
- Dimitrakopoulos, Stefanos & Tsionas, Mike, 2019. "Ordinal-response GARCH models for transaction data: A forecasting exercise," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1273-1287.
- Watanabe, Hajime & Maruyama, Takuya, 2024. "A Bayesian sample selection model with a binary outcome for handling residential self-selection in individual car ownership," Journal of choice modelling, Elsevier, vol. 51(C).
- Zhong, Tao & Young, Rhonda, 2010. "Multiple Choice Knapsack Problem: Example of planning choice in transportation," Evaluation and Program Planning, Elsevier, vol. 33(2), pages 128-137, May.
- Anindya Ghose & Sha Yang, 2007. "An Empirical Analysis of Search Engine Advertising: Sponsored Search and Cross-Selling in Electronic Markets," Working Papers 07-35, NET Institute, revised Sep 2007.
- Fernández de Marcos Giménez de los Galanes, Alberto, 2022. "Data-driven stabilizations of goodness-of-fit tests," DES - Working Papers. Statistics and Econometrics. WS 35324, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Tabi, Andrea & Hille, Stefanie Lena & Wüstenhagen, Rolf, 2014. "What makes people seal the green power deal? — Customer segmentation based on choice experiment in Germany," Ecological Economics, Elsevier, vol. 107(C), pages 206-215.
More about this item
Keywords
parallel Bayesian computation; rejection sampling; big data; multilevel models; marginal likelihood; customer heterogeneity; MCMC; sparse optimization; exploiting sparsity;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:35:y:2016:i:3:p:427-444. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.