IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v82y2012i4p307-316.html
   My bibliography  Save this article

Estimating demographic parameters using hidden process dynamic models

Author

Listed:
  • Gimenez, Olivier
  • Lebreton, Jean-Dominique
  • Gaillard, Jean-Michel
  • Choquet, Rémi
  • Pradel, Roger

Abstract

Structured population models are widely used in plant and animal demographic studies to assess population dynamics. In matrix population models, populations are described with discrete classes of individuals (age, life history stage or size). To calibrate these models, longitudinal data are collected at the individual level to estimate demographic parameters. However, several sources of uncertainty can complicate parameter estimation, such as imperfect detection of individuals inherent to monitoring in the wild and uncertainty in assigning a state to an individual. Here, we show how recent statistical models can help overcome these issues. We focus on hidden process models that run two time series in parallel, one capturing the dynamics of the true states and the other consisting of observations arising from these underlying possibly unknown states. In a first case study, we illustrate hidden Markov models with an example of how to accommodate state uncertainty using Frequentist theory and maximum likelihood estimation. In a second case study, we illustrate state-space models with an example of how to estimate lifetime reproductive success despite imperfect detection, using a Bayesian framework and Markov Chain Monte Carlo simulation. Hidden process models are a promising tool as they allow population biologists to cope with process variation while simultaneously accounting for observation error.

Suggested Citation

  • Gimenez, Olivier & Lebreton, Jean-Dominique & Gaillard, Jean-Michel & Choquet, Rémi & Pradel, Roger, 2012. "Estimating demographic parameters using hidden process dynamic models," Theoretical Population Biology, Elsevier, vol. 82(4), pages 307-316.
  • Handle: RePEc:eee:thpobi:v:82:y:2012:i:4:p:307-316
    DOI: 10.1016/j.tpb.2012.02.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580912000172
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2012.02.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ken B. Newman & Carmen Fernández & Len Thomas & Stephen T. Buckland, 2009. "Monte Carlo Inference for State–Space Models of Wild Animal Populations," Biometrics, The International Biometric Society, vol. 65(2), pages 572-583, June.
    2. R. B. O'Hara & S. Lampila & M. Orell, 2009. "Estimation of Rates of Births, Deaths, and Immigration from Mark–Recapture Data," Biometrics, The International Biometric Society, vol. 65(1), pages 275-281, March.
    3. P. Besbeas & S. N. Freeman & B. J. T. Morgan & E. A. Catchpole, 2002. "Integrating Mark–Recapture–Recovery and Census Data to Estimate Animal Abundance and Demographic Parameters," Biometrics, The International Biometric Society, vol. 58(3), pages 540-547, September.
    4. J. Andrew Royle, 2008. "Modeling Individual Effects in the Cormack–Jolly–Seber Model: A State–Space Formulation," Biometrics, The International Biometric Society, vol. 64(2), pages 364-370, June.
    5. Roger Pradel, 2005. "Multievent: An Extension of Multistate Capture–Recapture Models to Uncertain States," Biometrics, The International Biometric Society, vol. 61(2), pages 442-447, June.
    6. Gimenez, Olivier & Rossi, Vivien & Choquet, Rémi & Dehais, Camille & Doris, Blaise & Varella, Hubert & Vila, Jean-Pierre & Pradel, Roger, 2007. "State-space modelling of data on marked individuals," Ecological Modelling, Elsevier, vol. 206(3), pages 431-438.
    7. William A. Link & Richard J. Barker, 2005. "Modeling Association among Demographic Parameters in Analysis of Open Population Capture–Recapture Data," Biometrics, The International Biometric Society, vol. 61(1), pages 46-54, March.
    8. William L. Kendall & Rhema Bjorkland, 2001. "Using Open Robust Design Models to Estimate Temporary Emigration from Capture—Recapture Data," Biometrics, The International Biometric Society, vol. 57(4), pages 1113-1122, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marescot, Lucile & Gimenez, Olivier & Duchamp, Christophe & Marboutin, Eric & Chapron, Guillaume, 2012. "Reducing matrix population models with application to social animal species," Ecological Modelling, Elsevier, vol. 232(C), pages 91-96.
    2. Gimenez, Olivier & Mansilla, Lorena & Klaich, M. Javier & Coscarella, Mariano A. & Pedraza, Susana N. & Crespo, Enrique A., 2019. "Inferring animal social networks with imperfect detection," Ecological Modelling, Elsevier, vol. 401(C), pages 69-74.
    3. Louvrier, Julie & Chambert, Thierry & Marboutin, Eric & Gimenez, Olivier, 2018. "Accounting for misidentification and heterogeneity in occupancy studies using hidden Markov models," Ecological Modelling, Elsevier, vol. 387(C), pages 61-69.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ming Zhou & Rachel S. McCrea & Eleni Matechou & Diana J. Cole & Richard A. Griffiths, 2019. "Removal models accounting for temporary emigration," Biometrics, The International Biometric Society, vol. 75(1), pages 24-35, March.
    2. Meritxell Genovart & Roger Pradel, 2019. "Transience effect in capture-recapture studies: The importance of its biological meaning," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-13, September.
    3. Dennis, Emily B. & Kéry, Marc & Morgan, Byron J.T. & Coray, Armin & Schaub, Michael & Baur, Bruno, 2021. "Integrated modelling of insect population dynamics at two temporal scales," Ecological Modelling, Elsevier, vol. 441(C).
    4. Robert M. Dorazio, 2020. "Objective prior distributions for Jolly‐Seber models of zero‐augmented data," Biometrics, The International Biometric Society, vol. 76(4), pages 1285-1296, December.
    5. Gimenez, Olivier & Rossi, Vivien & Choquet, Rémi & Dehais, Camille & Doris, Blaise & Varella, Hubert & Vila, Jean-Pierre & Pradel, Roger, 2007. "State-space modelling of data on marked individuals," Ecological Modelling, Elsevier, vol. 206(3), pages 431-438.
    6. Murray G. Efford & Matthew R. Schofield, 2020. "A spatial open‐population capture‐recapture model," Biometrics, The International Biometric Society, vol. 76(2), pages 392-402, June.
    7. Richard Huggins & Jakub Stoklosa & Cameron Roach & Paul Yip, 2018. "Estimating the size of an open population using sparse capture–recapture data," Biometrics, The International Biometric Society, vol. 74(1), pages 280-288, March.
    8. R. B. O'Hara & S. Lampila & M. Orell, 2009. "Estimation of Rates of Births, Deaths, and Immigration from Mark–Recapture Data," Biometrics, The International Biometric Society, vol. 65(1), pages 275-281, March.
    9. Dunham, Kylee & Grand, James B., 2016. "Effects of model complexity and priors on estimation using sequential importance sampling/resampling for species conservation," Ecological Modelling, Elsevier, vol. 340(C), pages 28-36.
    10. Axel Finke & Ruth King & Alexandros Beskos & Petros Dellaportas, 2019. "Efficient Sequential Monte Carlo Algorithms for Integrated Population Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(2), pages 204-224, June.
    11. Choquet, Rémi & Garnier, Alexandre & Awuve, Edem & Besnard, Aurélien, 2017. "Transient state estimation using continuous-time processes applied to opportunistic capture–recapture data," Ecological Modelling, Elsevier, vol. 361(C), pages 157-163.
    12. Shirley Pledger & Edward Baker & Kim Scribner, 2013. "Breeding Return Times and Abundance in Capture–Recapture Models," Biometrics, The International Biometric Society, vol. 69(4), pages 991-1001, December.
    13. Bird, Tomas & Lyon, Jarod & Wotherspoon, Simon & King, Ruth & McCarthy, Michael, 2017. "Accounting for false mortality in telemetry tag applications," Ecological Modelling, Elsevier, vol. 355(C), pages 116-125.
    14. Gimenez, Olivier & Mansilla, Lorena & Klaich, M. Javier & Coscarella, Mariano A. & Pedraza, Susana N. & Crespo, Enrique A., 2019. "Inferring animal social networks with imperfect detection," Ecological Modelling, Elsevier, vol. 401(C), pages 69-74.
    15. Oliver, Lauren J. & Morgan, Byron J.T. & Durant, Sarah M. & Pettorelli, Nathalie, 2011. "Individual heterogeneity in recapture probability and survival estimates in cheetah," Ecological Modelling, Elsevier, vol. 222(3), pages 776-784.
    16. Sigourney, Douglas B. & Munch, Stephan B. & Letcher, Benjamin H., 2012. "Combining a Bayesian nonparametric method with a hierarchical framework to estimate individual and temporal variation in growth," Ecological Modelling, Elsevier, vol. 247(C), pages 125-134.
    17. Gurutzeta Guillera-Arroita & José J. Lahoz-Monfort, 2017. "Species occupancy estimation and imperfect detection: shall surveys continue after the first detection?," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(4), pages 381-398, October.
    18. Zhang, Hongmei & Ghosh, Kaushik & Ghosh, Pulak, 2012. "Sampling designs via a multivariate hypergeometric-Dirichlet process model for a multi-species assemblage with unknown heterogeneity," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2562-2573.
    19. Nichols, J.M. & Spendelow, J.A. & Nichols, J.D., 2017. "Using Optimal Transport Theory to Estimate Transition Probabilities in Metapopulation Dynamics," Ecological Modelling, Elsevier, vol. 359(C), pages 311-319.
    20. Joseph B Pfaller & Karen A Bjorndal & Milani Chaloupka & Kristina L Williams & Michael G Frick & Alan B Bolten, 2013. "Accounting for Imperfect Detection Is Critical for Inferring Marine Turtle Nesting Population Trends," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-5, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:82:y:2012:i:4:p:307-316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.