IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v359y2017icp311-319.html
   My bibliography  Save this article

Using Optimal Transport Theory to Estimate Transition Probabilities in Metapopulation Dynamics

Author

Listed:
  • Nichols, J.M.
  • Spendelow, J.A.
  • Nichols, J.D.

Abstract

This work considers the estimation of transition probabilities associated with populations moving among multiple spatial locations based on numbers of individuals at each location at two points in time. The problem is generally underdetermined as there exists an extremely large number of ways in which individuals can move from one set of locations to another. A unique solution therefore requires a constraint. The theory of optimal transport provides such a constraint in the form of a cost function, to be minimized in expectation over the space of possible transition matrices. We demonstrate the optimal transport approach on marked bird data and compare to the probabilities obtained via maximum likelihood estimation based on marked individuals. It is shown that by choosing the squared Euclidean distance as the cost, the estimated transition probabilities compare favorably to those obtained via maximum likelihood with marked individuals. Other implications of this cost are discussed, including the ability to accurately interpolate the population's spatial distribution at unobserved points in time and the more general relationship between the cost and minimum transport energy.

Suggested Citation

  • Nichols, J.M. & Spendelow, J.A. & Nichols, J.D., 2017. "Using Optimal Transport Theory to Estimate Transition Probabilities in Metapopulation Dynamics," Ecological Modelling, Elsevier, vol. 359(C), pages 311-319.
  • Handle: RePEc:eee:ecomod:v:359:y:2017:i:c:p:311-319
    DOI: 10.1016/j.ecolmodel.2017.06.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380017303253
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2017.06.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Raimund Kovacevic & Alois Pichler, 2015. "Tree approximation for discrete time stochastic processes: a process distance approach," Annals of Operations Research, Springer, vol. 235(1), pages 395-421, December.
    2. LaRue, Michelle A. & Nielsen, Clayton K., 2008. "Modelling potential dispersal corridors for cougars in midwestern North America using least-cost path methods," Ecological Modelling, Elsevier, vol. 212(3), pages 372-381.
    3. P. Besbeas & J.‐D. Lebreton & B. J. T. Morgan, 2003. "The efficient integration of abundance and demographic data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(1), pages 95-102, January.
    4. P. Besbeas & S. N. Freeman & B. J. T. Morgan & E. A. Catchpole, 2002. "Integrating Mark–Recapture–Recovery and Census Data to Estimate Animal Abundance and Demographic Parameters," Biometrics, The International Biometric Society, vol. 58(3), pages 540-547, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mosnier, A. & Doniol-Valcroze, T. & Gosselin, J.-F. & Lesage, V. & Measures, L.N. & Hammill, M.O., 2015. "Insights into processes of population decline using an integrated population model: The case of the St. Lawrence Estuary beluga (Delphinapterus leucas)," Ecological Modelling, Elsevier, vol. 314(C), pages 15-31.
    2. Dennis, Emily B. & Kéry, Marc & Morgan, Byron J.T. & Coray, Armin & Schaub, Michael & Baur, Bruno, 2021. "Integrated modelling of insect population dynamics at two temporal scales," Ecological Modelling, Elsevier, vol. 441(C).
    3. Gimenez, Olivier & Rossi, Vivien & Choquet, Rémi & Dehais, Camille & Doris, Blaise & Varella, Hubert & Vila, Jean-Pierre & Pradel, Roger, 2007. "State-space modelling of data on marked individuals," Ecological Modelling, Elsevier, vol. 206(3), pages 431-438.
    4. Besbeas, P.T. & McCrea, R.S. & Morgan, B.J.T., 2022. "Selecting age structure in integrated population models," Ecological Modelling, Elsevier, vol. 473(C).
    5. Panagiotis Besbeas & Byron J. T. Morgan, 2017. "Variance estimation for integrated population models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(4), pages 439-460, October.
    6. Zhang, Hongmei & Ghosh, Kaushik & Ghosh, Pulak, 2012. "Sampling designs via a multivariate hypergeometric-Dirichlet process model for a multi-species assemblage with unknown heterogeneity," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2562-2573.
    7. Leo Polansky & Ken B. Newman & Lara Mitchell, 2021. "Improving inference for nonlinear state‐space models of animal population dynamics given biased sequential life stage data," Biometrics, The International Biometric Society, vol. 77(1), pages 352-361, March.
    8. Blanca Sarzo & Ruth King & David Conesa & Jonas Hentati-Sundberg, 2021. "Correcting Bias in Survival Probabilities for Partially Monitored Populations via Integrated Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(2), pages 200-219, June.
    9. Biljana Savić & Alevtina Evgrafova & Cenk Donmez & Filip Vasić & Michael Glemnitz & Carsten Paul, 2021. "Assessing the Role of Kettle Holes for Providing and Connecting Amphibian Habitats in Agricultural Landscapes," Land, MDPI, vol. 10(7), pages 1-22, June.
    10. Abadi, Fitsum & Gimenez, Olivier & Jakober, Hans & Stauber, Wolfgang & Arlettaz, Raphaël & Schaub, Michael, 2012. "Estimating the strength of density dependence in the presence of observation errors using integrated population models," Ecological Modelling, Elsevier, vol. 242(C), pages 1-9.
    11. Martin Glanzer & Georg Ch. Pflug, 2020. "Multiscale stochastic optimization: modeling aspects and scenario generation," Computational Optimization and Applications, Springer, vol. 75(1), pages 1-34, January.
    12. José J. Lahoz-Monfort & Michael P. Harris & Sarah Wanless & Stephen N. Freeman & Byron J. T. Morgan, 2017. "Bringing It All Together: Multi-species Integrated Population Modelling of a Breeding Community," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(2), pages 140-160, June.
    13. Giovanni Pantuso & Trine K. Boomsma, 2020. "On the number of stages in multistage stochastic programs," Annals of Operations Research, Springer, vol. 292(2), pages 581-603, September.
    14. W. Ackooij & X. Warin, 2020. "On conditional cuts for stochastic dual dynamic programming," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 173-199, June.
    15. Barraquand, Frédéric & Gimenez, Olivier, 2019. "Integrating multiple data sources to fit matrix population models for interacting species," Ecological Modelling, Elsevier, vol. 411(C).
    16. R. B. O'Hara & S. Lampila & M. Orell, 2009. "Estimation of Rates of Births, Deaths, and Immigration from Mark–Recapture Data," Biometrics, The International Biometric Society, vol. 65(1), pages 275-281, March.
    17. Sinnott, Emily A. & Thompson, Frank R. & Weegman, Mitch D. & Thompson, Thomas R. & Mosloff, Alisha R. & Hedges, R. Kyle & Loncarich, Frank L., 2023. "Evaluation of seasonal site-level demography and management for northern bobwhite using integrated population models," Ecological Modelling, Elsevier, vol. 475(C).
    18. Weiguo Zhang & Xiaolei He, 2022. "A New Scenario Reduction Method Based on Higher-Order Moments," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 1903-1918, July.
    19. Devin S. Johnson & Brian M. Brost & Mevin B. Hooten, 2022. "Greater Than the Sum of its Parts: Computationally Flexible Bayesian Hierarchical Modeling," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 382-400, June.
    20. Rong Guo & Yujing Bai, 2019. "Simulation of an Urban-Rural Spatial Structure on the Basis of Green Infrastructure Assessment: The Case of Harbin, China," Land, MDPI, vol. 8(12), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:359:y:2017:i:c:p:311-319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.