IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v387y2018icp61-69.html
   My bibliography  Save this article

Accounting for misidentification and heterogeneity in occupancy studies using hidden Markov models

Author

Listed:
  • Louvrier, Julie
  • Chambert, Thierry
  • Marboutin, Eric
  • Gimenez, Olivier

Abstract

Occupancy models allow assessing species occurrence while accounting for imperfect detection. As with any statistical models, occupancy models rely on several assumptions amongst which (i) there should be no unmodelled heterogeneity in the detection probability and (ii) the species should not be detected when absent from a site, in other words there should be no false positives (e.g., due to misidentification). In the real world, these two assumptions are often violated. To date, models accounting simultaneously for both detection heterogeneity and false positives are yet to be developed. Here, we first show how occupancy models with false positives can be formulated as hidden Markov models (HMM). Second, benefiting from the HMM framework flexibility, we extend models with false positives to account for heterogeneity with finite mixtures. First, using simulations, we demonstrate that, as the level of heterogeneity increases, occupancy models accounting for both heterogeneity and misidentification perform better in terms of bias and precision than models accounting for misidentification only. Next, we illustrate the implementation of our new model to a real case study with grey wolves (Canis lupus) in France. We demonstrate that heterogeneity in wolf detection (false negatives) is mainly due to a heterogeneous sampling effort across space. In addition to providing a novel modeling formulation, this work illustrates the flexibility of HMM framework to formulate complex ecological models and relax important assumptions that are not always likely to hold. In particular, we show how to decompose the model structure in several simple components, in a way that provides much clearer ecological interpretation.

Suggested Citation

  • Louvrier, Julie & Chambert, Thierry & Marboutin, Eric & Gimenez, Olivier, 2018. "Accounting for misidentification and heterogeneity in occupancy studies using hidden Markov models," Ecological Modelling, Elsevier, vol. 387(C), pages 61-69.
  • Handle: RePEc:eee:ecomod:v:387:y:2018:i:c:p:61-69
    DOI: 10.1016/j.ecolmodel.2018.09.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380018302904
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2018.09.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert M. Dorazio & J. Andrew Royle, 2003. "Mixture Models for Estimating the Size of a Closed Population When Capture Rates Vary among Individuals," Biometrics, The International Biometric Society, vol. 59(2), pages 351-364, June.
    2. J. Andrew Royle, 2006. "Site Occupancy Models with Heterogeneous Detection Probabilities," Biometrics, The International Biometric Society, vol. 62(1), pages 97-102, March.
    3. Gimenez, Olivier & Lebreton, Jean-Dominique & Gaillard, Jean-Michel & Choquet, Rémi & Pradel, Roger, 2012. "Estimating demographic parameters using hidden process dynamic models," Theoretical Population Biology, Elsevier, vol. 82(4), pages 307-316.
    4. Roger Pradel, 2005. "Multievent: An Extension of Multistate Capture–Recapture Models to Uncertain States," Biometrics, The International Biometric Society, vol. 61(2), pages 442-447, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Changjun Huang & Lv Zhou & Fenliang Liu & Yuanzhi Cao & Zhong Liu & Yun Xue, 2023. "Deformation Prediction of Dam Based on Optimized Grey Verhulst Model," Mathematics, MDPI, vol. 11(7), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. Andrew Royle, 2009. "Analysis of Capture–Recapture Models with Individual Covariates Using Data Augmentation," Biometrics, The International Biometric Society, vol. 65(1), pages 267-274, March.
    2. Louis-Paul Rivest & Sophie Baillargeon, 2007. "Applications and Extensions of Chao's Moment Estimator for the Size of a Closed Population," Biometrics, The International Biometric Society, vol. 63(4), pages 999-1006, December.
    3. Robert M. Dorazio & Bhramar Mukherjee & Li Zhang & Malay Ghosh & Howard L. Jelks & Frank Jordan, 2008. "Modeling Unobserved Sources of Heterogeneity in Animal Abundance Using a Dirichlet Process Prior," Biometrics, The International Biometric Society, vol. 64(2), pages 635-644, June.
    4. B. J. T. Morgan & M. S. Ridout, 2008. "A new mixture model for capture heterogeneity," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 57(4), pages 433-446, September.
    5. J. Andrew Royle, 2008. "Modeling Individual Effects in the Cormack–Jolly–Seber Model: A State–Space Formulation," Biometrics, The International Biometric Society, vol. 64(2), pages 364-370, June.
    6. Hannah Worthington & Rachel S. McCrea & Ruth King & Richard A. Griffiths, 2019. "Estimation of Population Size When Capture Probability Depends on Individual States," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(1), pages 154-172, March.
    7. Gimenez, Olivier & Mansilla, Lorena & Klaich, M. Javier & Coscarella, Mariano A. & Pedraza, Susana N. & Crespo, Enrique A., 2019. "Inferring animal social networks with imperfect detection," Ecological Modelling, Elsevier, vol. 401(C), pages 69-74.
    8. Oliver, Lauren J. & Morgan, Byron J.T. & Durant, Sarah M. & Pettorelli, Nathalie, 2011. "Individual heterogeneity in recapture probability and survival estimates in cheetah," Ecological Modelling, Elsevier, vol. 222(3), pages 776-784.
    9. Chang Xuan Mao & Na You, 2009. "On Comparison of Mixture Models for Closed Population Capture–Recapture Studies," Biometrics, The International Biometric Society, vol. 65(2), pages 547-553, June.
    10. Hajo Holzmann & Axel Munk & Walter Zucchini, 2006. "On Identifiability in Capture–Recapture Models," Biometrics, The International Biometric Society, vol. 62(3), pages 934-936, September.
    11. Gurutzeta Guillera-Arroita & José J. Lahoz-Monfort, 2017. "Species occupancy estimation and imperfect detection: shall surveys continue after the first detection?," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(4), pages 381-398, October.
    12. Jennifer B Smith & Bryan S Stevens & Dwayne R Etter & David M Williams, 2020. "Performance of spatial capture-recapture models with repurposed data: Assessing estimator robustness for retrospective applications," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-16, August.
    13. J. Andrew Royle, 2006. "Site Occupancy Models with Heterogeneous Detection Probabilities," Biometrics, The International Biometric Society, vol. 62(1), pages 97-102, March.
    14. Roland Langrock & Thomas Kneib & Alexander Sohn & Stacy L. DeRuiter, 2015. "Nonparametric inference in hidden Markov models using P-splines," Biometrics, The International Biometric Society, vol. 71(2), pages 520-528, June.
    15. Jennifer Pohle & Roland Langrock & Floris M. Beest & Niels Martin Schmidt, 2017. "Selecting the Number of States in Hidden Markov Models: Pragmatic Solutions Illustrated Using Animal Movement," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(3), pages 270-293, September.
    16. Iraj Kazemi & Fatemeh Hassanzadeh, 2021. "Marginalized random-effects models for clustered binomial data through innovative link functions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(2), pages 197-228, June.
    17. Yuzi Zhang & Howard H. Chang & Qu Cheng & Philip A. Collender & Ting Li & Jinge He & Justin V. Remais, 2023. "A hierarchical model for analyzing multisite individual‐level disease surveillance data from multiple systems," Biometrics, The International Biometric Society, vol. 79(2), pages 1507-1519, June.
    18. Cecilia Soldatini & Yuri Vladimir Albores-Barajas & Bruno Massa & Olivier Gimenez, 2014. "Climate Driven Life Histories: The Case of the Mediterranean Storm Petrel," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-10, April.
    19. Francesco Bartolucci & Monia Lupparelli, 2008. "Focused Information Criterion for Capture–Recapture Models for Closed Populations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(4), pages 629-649, December.
    20. D. Dail & L. Madsen, 2013. "Estimating Open Population Site Occupancy from Presence–Absence Data Lacking the Robust Design," Biometrics, The International Biometric Society, vol. 69(1), pages 146-156, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:387:y:2018:i:c:p:61-69. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.