Integrating Mark–Recapture–Recovery and Census Data to Estimate Animal Abundance and Demographic Parameters
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- J. Durbin & S. J. Koopman, 2000.
"Time series analysis of non‐Gaussian observations based on state space models from both classical and Bayesian perspectives,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(1), pages 3-56.
- Durbin, J. & Koopman, S.J.M., 1998. "Time Series Analysis of Non-Gaussian Observations Based on State Space Models from Both Classical and Bayesian Perspectives," Discussion Paper 1998-142, Tilburg University, Center for Economic Research.
- Durbin, J. & Koopman, S.J.M., 1998. "Time Series Analysis of Non-Gaussian Observations Based on State Space Models from Both Classical and Bayesian Perspectives," Other publications TiSEM 6338af09-6f2c-46d0-985b-d, Tilburg University, School of Economics and Management.
- James Nichols & James Hines, 2002. "Approaches for the direct estimation of u , and demographic contributions to u , using capture-recapture data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 29(1-4), pages 539-568.
- E. A. Catchpole & B. J. T. Morgan & T. N. Coulson & S. N. Freeman & S. D. Albon, 2000. "Factors influencing Soay sheep survival," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 49(4), pages 453-472.
- E. A. Catchpole & P. M. Kgosi & B. J. T. Morgan, 2001. "On the Near-Singularity of Models for Animal Recovery Data," Biometrics, The International Biometric Society, vol. 57(3), pages 720-726, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- S. C. Barry & S. P. Brooks & E. A. Catchpole & B. J. T. Morgan, 2003. "The Analysis of Ring-Recovery Data Using Random Effects," Biometrics, The International Biometric Society, vol. 59(1), pages 54-65, March.
- Diana J. Cole, 2019. "Parameter redundancy and identifiability in hidden Markov models," METRON, Springer;Sapienza Università di Roma, vol. 77(2), pages 105-118, August.
- Motta, Anderson C. O. & Hotta, Luiz K., 2003. "Exact Maximum Likelihood and Bayesian Estimation of the Stochastic Volatility Model," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 23(2), November.
- Maravall, A. & del Rio, A., 2007.
"Temporal aggregation, systematic sampling, and the Hodrick-Prescott filter,"
Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 975-998, October.
- Agustín Maravall & Ana del Río, 2007. "Temporal aggregation, systematic sampling, and the Hodrick-Prescott filter," Working Papers 0728, Banco de España.
- Bidarkota, Prasad V. & Dupoyet, Brice V. & McCulloch, J. Huston, 2009. "Asset pricing with incomplete information and fat tails," Journal of Economic Dynamics and Control, Elsevier, vol. 33(6), pages 1314-1331, June.
- Strickland, Chris M. & Martin, Gael M. & Forbes, Catherine S., 2008.
"Parameterisation and efficient MCMC estimation of non-Gaussian state space models,"
Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2911-2930, February.
- Chris M Strickland & Gael Martin & Catherine S Forbes, 2006. "Parameterisation and Efficient MCMC Estimation of Non-Gaussian State Space Models," Monash Econometrics and Business Statistics Working Papers 22/06, Monash University, Department of Econometrics and Business Statistics.
- Lange, Rutger-Jan, 2024. "Bellman filtering and smoothing for state–space models," Journal of Econometrics, Elsevier, vol. 238(2).
- Siem Jan Koopman & André Lucas & Marcel Scharth, 2016.
"Predicting Time-Varying Parameters with Parameter-Driven and Observation-Driven Models,"
The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 97-110, March.
- Siem Jan Koopman & Andre Lucas & Marcel Scharth, 2012. "Predicting Time-Varying Parameters with Parameter-Driven and Observation-Driven Models," Tinbergen Institute Discussion Papers 12-020/4, Tinbergen Institute.
- Alexander Tsyplakov, 2011. "An introduction to state space modeling (in Russian)," Quantile, Quantile, issue 9, pages 1-24, July.
- Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005.
"Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements,"
Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
- Siem Jan Koopman & Borus Jungbacker & Eugenie Hol, 2004. "Forecasting Daily Variability of the S&P 100 Stock Index using Historical, Realised and Implied Volatility Measurements," Tinbergen Institute Discussion Papers 04-016/4, Tinbergen Institute.
- Eugenie Hol & Siem Jan Koopman & Borus Jungbacker, 2004. "Forecasting daily variability of the S\&P 100 stock index using historical, realised and implied volatility measurements," Computing in Economics and Finance 2004 342, Society for Computational Economics.
- Mesters, G. & Koopman, S.J., 2014.
"Generalized dynamic panel data models with random effects for cross-section and time,"
Journal of Econometrics, Elsevier, vol. 180(2), pages 127-140.
- Geert Mesters & Siem Jan Koopman, 2012. "Generalized Dynamic Panel Data Models with Random Effects for Cross-Section and Time," Tinbergen Institute Discussion Papers 12-009/4, Tinbergen Institute, revised 18 Mar 2014.
- Hajar Hajmohammadi & Hamid Salehi, 2024. "The Impacts of COVID-19 Lockdowns on Road Transport Air Pollution in London: A State-Space Modelling Approach," IJERPH, MDPI, vol. 21(9), pages 1-12, August.
- Na Jin & Sergio Lence & Chad Hart & Dermot Hayes, 2012.
"The Long-Term Structure of Commodity Futures,"
American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(3), pages 718-735.
- Jin, Na & Lence, Sergio H & Hart, Chad & Hayes, Dermot J., 2012. "The Long-Term Structure of Commodity Futures," ISU General Staff Papers 201201010800001071, Iowa State University, Department of Economics.
- Jin, Na & Lence, Sergio H. & Hart, Chad E. & Hayes, Dermot J., 2012. "The Long-Term Structure of Commodity Futures," Staff General Research Papers Archive 34992, Iowa State University, Department of Economics.
- Jung, Robert C. & Kukuk, Martin & Liesenfeld, Roman, 2006. "Time series of count data: modeling, estimation and diagnostics," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2350-2364, December.
- Garland Durham, 2004. "Likelihood-based estimation and specification analysis of one- and two-factor SV models with leverage effects," Econometric Society 2004 North American Summer Meetings 294, Econometric Society.
- Tommaso Proietti & Alessandra Luati, 2013.
"Maximum likelihood estimation of time series models: the Kalman filter and beyond,"
Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 15, pages 334-362,
Edward Elgar Publishing.
- Luati, Alessandra & Proietti, Tommaso, 2012. "Maximum likelihood estimation of time series models: the Kalman filter and beyond," Working Papers 2012_02, University of Sydney Business School, Discipline of Business Analytics.
- Tommaso, Proietti & Alessandra, Luati, 2012. "Maximum likelihood estimation of time series models: the Kalman filter and beyond," MPRA Paper 39600, University Library of Munich, Germany.
- repec:jss:jstsof:16:i01 is not listed on IDEAS
- Tsionas, Mike, 2012. "Simple techniques for likelihood analysis of univariate and multivariate stable distributions: with extensions to multivariate stochastic volatility and dynamic factor models," MPRA Paper 40966, University Library of Munich, Germany, revised 20 Aug 2012.
- Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range‐Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, June.
- Vêlayoudom Marimoutou & Manel Soury, 2015. "Energy Markets and CO2 Emissions: Analysis by Stochastic Copula Autoregressive Model," AMSE Working Papers 1520, Aix-Marseille School of Economics, France.
- Siem Jan Koopman & Rutger Lit & Thuy Minh Nguyen, 2012. "Fast Efficient Importance Sampling by State Space Methods," Tinbergen Institute Discussion Papers 12-008/4, Tinbergen Institute, revised 16 Oct 2014.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:58:y:2002:i:3:p:540-547. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.