IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v77y2010i2p119-130.html
   My bibliography  Save this article

Estimating genetic architectures from artificial-selection responses: A random-effect framework

Author

Listed:
  • Le Rouzic, Arnaud
  • Skaug, Hans J.
  • Hansen, Thomas F.

Abstract

Artificial-selection experiments on plants and animals generate large datasets reporting phenotypic changes in the course of time. The dynamics of the changes reflect the underlying genetic architecture, but only simple statistical tools have so far been available to analyze such time series. This manuscript describes a general statistical framework based on random-effect models aiming at estimating key parameters of genetic architectures from artificial-selection responses. We derive explicit Mendelian models (in which the genetic architecture relies on one or two large-effect loci), and compare them with classical polygenic models. With simulations, we show that the models are accurate and powerful enough to provide useful estimates from realistic experimental designs, and we demonstrate that model selection is effective in picking few-locus vs. polygenic genetic architectures even from medium-quality artificial-selection data. The method is illustrated by the analysis of a historical selection experiment, carried on color pattern in rats by Castle et al.

Suggested Citation

  • Le Rouzic, Arnaud & Skaug, Hans J. & Hansen, Thomas F., 2010. "Estimating genetic architectures from artificial-selection responses: A random-effect framework," Theoretical Population Biology, Elsevier, vol. 77(2), pages 119-130.
  • Handle: RePEc:eee:thpobi:v:77:y:2010:i:2:p:119-130
    DOI: 10.1016/j.tpb.2009.12.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580909001373
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2009.12.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brendan Maher, 2008. "Personal genomes: The case of the missing heritability," Nature, Nature, vol. 456(7218), pages 18-21, November.
    2. Skaug, Hans J. & Fournier, David A., 2006. "Automatic approximation of the marginal likelihood in non-Gaussian hierarchical models," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 699-709, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chuong B Do & David A Hinds & Uta Francke & Nicholas Eriksson, 2012. "Comparison of Family History and SNPs for Predicting Risk of Complex Disease," PLOS Genetics, Public Library of Science, vol. 8(10), pages 1-16, October.
    2. Andre Python & Andreas Bender & Marta Blangiardo & Janine B. Illian & Ying Lin & Baoli Liu & Tim C.D. Lucas & Siwei Tan & Yingying Wen & Davit Svanidze & Jianwei Yin, 2022. "A downscaling approach to compare COVID‐19 count data from databases aggregated at different spatial scales," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 202-218, January.
    3. Simone Vincenzi & Marc Mangel & Alain J Crivelli & Stephan Munch & Hans J Skaug, 2014. "Determining Individual Variation in Growth and Its Implication for Life-History and Population Processes Using the Empirical Bayes Method," PLOS Computational Biology, Public Library of Science, vol. 10(9), pages 1-16, September.
    4. Ben C. Stevenson & Rachel M. Fewster & Koustubh Sharma, 2022. "Spatial correlation structures for detections of individuals in spatial capture–recapture models," Biometrics, The International Biometric Society, vol. 78(3), pages 963-973, September.
    5. Iuliana Ionita-Laza & Joseph D Buxbaum & Nan M Laird & Christoph Lange, 2011. "A New Testing Strategy to Identify Rare Variants with Either Risk or Protective Effect on Disease," PLOS Genetics, Public Library of Science, vol. 7(2), pages 1-6, February.
    6. Aida Bianco & Eusebio Chiefari & Carmelo G A Nobile & Daniela Foti & Maria Pavia & Antonio Brunetti, 2015. "The Association between HMGA1 rs146052672 Variant and Type 2 Diabetes: A Transethnic Meta-Analysis," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-15, August.
    7. Yumei Yang & Qishan Wang & Qiang Chen & Rongrong Liao & Xiangzhe Zhang & Hongjie Yang & Youmin Zheng & Zhiwu Zhang & Yuchun Pan, 2014. "A New Genotype Imputation Method with Tolerance to High Missing Rate and Rare Variants," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-7, June.
    8. Chung-Feng Kao & Jia-Rou Liu & Hung Hung & Po-Hsiu Kuo, 2015. "A Robust GWSS Method to Simultaneously Detect Rare and Common Variants for Complex Disease," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-14, April.
    9. Kristensen, Kasper & Nielsen, Anders & Berg, Casper W. & Skaug, Hans & Bell, Bradley M., 2016. "TMB: Automatic Differentiation and Laplace Approximation," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(i05).
    10. Dominic Russ & John A Williams & Victor Roth Cardoso & Laura Bravo-Merodio & Samantha C Pendleton & Furqan Aziz & Animesh Acharjee & Georgios V Gkoutos, 2022. "Evaluating the detection ability of a range of epistasis detection methods on simulated data for pure and impure epistatic models," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-19, February.
    11. von Stumm, Sophie & Kandaswamy, Radhika & Maxwell, Jessye, 2023. "Gene-environment interplay in early life cognitive development," Intelligence, Elsevier, vol. 98(C).
    12. Charles-Elie Rabier & Philippe Barre & Torben Asp & Gilles Charmet & Brigitte Mangin, 2016. "On the Accuracy of Genomic Selection," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-23, June.
    13. Kleppe, Tore Selland & Skaug, Hans Julius, 2012. "Fitting general stochastic volatility models using Laplace accelerated sequential importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3105-3119.
    14. Lee, Woojoo & Lim, Johan & Lee, Youngjo & del Castillo, Joan, 2011. "The hierarchical-likelihood approach to autoregressive stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 248-260, January.
    15. Janet Currie, 2011. "Ungleichheiten bei der Geburt: Einige Ursachen und Folgen," Perspektiven der Wirtschaftspolitik, Verein für Socialpolitik, vol. 12(s1), pages 42-65, May.
    16. Karen Kapur & Toby Johnson & Noam D Beckmann & Joban Sehmi & Toshiko Tanaka & Zoltán Kutalik & Unnur Styrkarsdottir & Weihua Zhang & Diana Marek & Daniel F Gudbjartsson & Yuri Milaneschi & Hilma Holm , 2010. "Genome-Wide Meta-Analysis for Serum Calcium Identifies Significantly Associated SNPs near the Calcium-Sensing Receptor (CASR) Gene," PLOS Genetics, Public Library of Science, vol. 6(7), pages 1-12, July.
    17. Øystein Sørensen & Anders M. Fjell & Kristine B. Walhovd, 2023. "Longitudinal Modeling of Age-Dependent Latent Traits with Generalized Additive Latent and Mixed Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 456-486, June.
    18. Bingley, Paul & Cappellari, Lorenzo & Tatsiramos, Konstantinos, 2023. "On the Origins of Socio-Economic Inequalities: Evidence from Twin Families," IZA Discussion Papers 16520, Institute of Labor Economics (IZA).
    19. Kettlewell, Nathan & Tymula, Agnieszka & Yoo, Hong Il, 2023. "The Heritability of Economic Preferences," IZA Discussion Papers 16633, Institute of Labor Economics (IZA).
    20. Laurini Márcio Poletti, 2013. "A Hybrid Data Cloning Maximum Likelihood Estimator for Stochastic Volatility Models," Journal of Time Series Econometrics, De Gruyter, vol. 5(2), pages 193-229, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:77:y:2010:i:2:p:119-130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.