IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v134y2020icp171-181.html
   My bibliography  Save this article

Testing for population decline using maximal linkage disequilibrium blocks

Author

Listed:
  • Kerdoncuff, Elise
  • Lambert, Amaury
  • Achaz, Guillaume

Abstract

Only 6% of known species have a conservation status. Methods that assess conservation statuses are often based on individual counts and are thus too laborious to be generalized to all species. Population genomics methods that infer past variations in population size are easy to use but limited to the relatively distant past. Here we propose a population genomics approach that tests for recent population decline and may be used to assess species conservation statuses. More specifically, we study Maximal Recombination Free (MRF) blocks, that are segments of a sequence alignment inherited from a common ancestor without recombination. MRF blocks are relatively longer in small than in large populations. We use the distribution of MRF block lengths rescaled by their mean to test for recent population decline. However, because MRF blocks are difficult to detect, we also consider Maximal Linkage Disequilibrium (MLD) blocks, which are runs of single nucleotide polymorphisms compatible with a single tree. We develop a new method capable of inferring a very recent decline (e.g. with a detection power of 50% for populations whose size was halved to N, 0.05 ×N generations ago) from rescaled MLD block lengths. Our framework could serve as a basis for quantitative tools to assess conservation status in a wide range of species.

Suggested Citation

  • Kerdoncuff, Elise & Lambert, Amaury & Achaz, Guillaume, 2020. "Testing for population decline using maximal linkage disequilibrium blocks," Theoretical Population Biology, Elsevier, vol. 134(C), pages 171-181.
  • Handle: RePEc:eee:thpobi:v:134:y:2020:i:c:p:171-181
    DOI: 10.1016/j.tpb.2020.03.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580920300289
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2020.03.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carmi, Shai & Wilton, Peter R. & Wakeley, John & Pe’er, Itsik, 2014. "A renewal theory approach to IBD sharing," Theoretical Population Biology, Elsevier, vol. 97(C), pages 35-48.
    2. Wei Zhang & Erica Westerman & Eyal Nitzany & Stephanie Palmer & Marcus R. Kronforst, 2017. "Tracing the origin and evolution of supergene mimicry in butterflies," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    3. Mazet, Olivier & Rodríguez, Willy & Chikhi, Lounès, 2015. "Demographic inference using genetic data from a single individual: Separating population size variation from population structure," Theoretical Population Biology, Elsevier, vol. 104(C), pages 46-58.
    4. Etienne Patin & Katherine J. Siddle & Guillaume Laval & Hélène Quach & Christine Harmant & Noémie Becker & Alain Froment & Béatrice Régnault & Laure Lemée & Simon Gravel & Jean-Marie Hombert & Lolke V, 2014. "The impact of agricultural emergence on the genetic history of African rainforest hunter-gatherers and agriculturalists," Nature Communications, Nature, vol. 5(1), pages 1-10, May.
    5. Mathieu Tiret & Frédéric Hospital, 2017. "Blocks of chromosomes identical by descent in a population: Models and predictions," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-11, November.
    6. Heng Li & Richard Durbin, 2011. "Inference of human population history from individual whole-genome sequences," Nature, Nature, vol. 475(7357), pages 493-496, July.
    7. Jerome Kelleher & Alison M Etheridge & Gilean McVean, 2016. "Efficient Coalescent Simulation and Genealogical Analysis for Large Sample Sizes," PLOS Computational Biology, Public Library of Science, vol. 12(5), pages 1-22, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deng, Yun & Song, Yun S. & Nielsen, Rasmus, 2021. "The distribution of waiting distances in ancestral recombination graphs," Theoretical Population Biology, Elsevier, vol. 141(C), pages 34-43.
    2. Guangping Huang & Lingyun Song & Xin Du & Xin Huang & Fuwen Wei, 2023. "Evolutionary genomics of camouflage innovation in the orchid mantis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Alberto A. Campos & Cameron D. Bullen & Edward J. Gregr & Iain McKechnie & Kai M. A. Chan, 2022. "Steller’s sea cow uncertain history illustrates importance of ecological context when interpreting demographic histories from genomes," Nature Communications, Nature, vol. 13(1), pages 1-3, December.
    4. Johndrow, James E. & Palacios, Julia A., 2019. "Exact limits of inference in coalescent models," Theoretical Population Biology, Elsevier, vol. 125(C), pages 75-93.
    5. Gideon S Bradburd & Peter L Ralph & Graham M Coop, 2016. "A Spatial Framework for Understanding Population Structure and Admixture," PLOS Genetics, Public Library of Science, vol. 12(1), pages 1-38, January.
    6. Juraj Bergman & Rasmus Ø. Pedersen & Erick J. Lundgren & Rhys T. Lemoine & Sophie Monsarrat & Elena A. Pearce & Mikkel H. Schierup & Jens-Christian Svenning, 2023. "Worldwide Late Pleistocene and Early Holocene population declines in extant megafauna are associated with Homo sapiens expansion rather than climate change," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Per Unneberg & Mårten Larsson & Anna Olsson & Ola Wallerman & Anna Petri & Ignas Bunikis & Olga Vinnere Pettersson & Chiara Papetti & Astthor Gislason & Henrik Glenner & Joan E. Cartes & Leocadio Blan, 2024. "Ecological genomics in the Northern krill uncovers loci for local adaptation across ocean basins," Nature Communications, Nature, vol. 15(1), pages 1-29, December.
    8. Cotter, Daniel J. & Severson, Alissa L. & Rosenberg, Noah A., 2021. "The effect of consanguinity on coalescence times on the X chromosome," Theoretical Population Biology, Elsevier, vol. 140(C), pages 32-43.
    9. Ya-Mei Ding & Xiao-Xu Pang & Yu Cao & Wei-Ping Zhang & Susanne S. Renner & Da-Yong Zhang & Wei-Ning Bai, 2023. "Genome structure-based Juglandaceae phylogenies contradict alignment-based phylogenies and substitution rates vary with DNA repair genes," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Romain Fournier & Zoi Tsangalidou & David Reich & Pier Francesco Palamara, 2023. "Haplotype-based inference of recent effective population size in modern and ancient DNA samples," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Steinrücken, Matthias & Paul, Joshua S. & Song, Yun S., 2013. "A sequentially Markov conditional sampling distribution for structured populations with migration and recombination," Theoretical Population Biology, Elsevier, vol. 87(C), pages 51-61.
    12. Barton, N.H. & Etheridge, A.M. & Kelleher, J. & Véber, A., 2013. "Inference in two dimensions: Allele frequencies versus lengths of shared sequence blocks," Theoretical Population Biology, Elsevier, vol. 87(C), pages 105-119.
    13. Sergio F. Nigenda-Morales & Meixi Lin & Paulina G. Nuñez-Valencia & Christopher C. Kyriazis & Annabel C. Beichman & Jacqueline A. Robinson & Aaron P. Ragsdale & Jorge Urbán R. & Frederick I. Archer & , 2023. "The genomic footprint of whaling and isolation in fin whale populations," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    14. Ralph, Peter L., 2019. "An empirical approach to demographic inference with genomic data," Theoretical Population Biology, Elsevier, vol. 127(C), pages 91-101.
    15. Legried, Brandon & Terhorst, Jonathan, 2022. "Rates of convergence in the two-island and isolation-with-migration models," Theoretical Population Biology, Elsevier, vol. 147(C), pages 16-27.
    16. Zihao Wang & Wenxi Wang & Xiaoming Xie & Yongfa Wang & Zhengzhao Yang & Huiru Peng & Mingming Xin & Yingyin Yao & Zhaorong Hu & Jie Liu & Zhenqi Su & Chaojie Xie & Baoyun Li & Zhongfu Ni & Qixin Sun &, 2022. "Dispersed emergence and protracted domestication of polyploid wheat uncovered by mosaic ancestral haploblock inference," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    17. Vasili Pankratov & Milyausha Yunusbaeva & Sergei Ryakhovsky & Maksym Zarodniuk & Bayazit Yunusbayev, 2022. "Prioritizing autoimmunity risk variants for functional analyses by fine-mapping mutations under natural selection," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    18. Jörn Bethune & April Kleppe & Søren Besenbacher, 2022. "A method to build extended sequence context models of point mutations and indels," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Wilton, Peter R. & Baduel, Pierre & Landon, Matthieu M. & Wakeley, John, 2017. "Population structure and coalescence in pedigrees: Comparisons to the structured coalescent and a framework for inference," Theoretical Population Biology, Elsevier, vol. 115(C), pages 1-12.
    20. Hobolth, Asger & Jensen, Jens Ledet, 2014. "Markovian approximation to the finite loci coalescent with recombination along multiple sequences," Theoretical Population Biology, Elsevier, vol. 98(C), pages 48-58.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:134:y:2020:i:c:p:171-181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.