IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34461-9.html
   My bibliography  Save this article

Prioritizing autoimmunity risk variants for functional analyses by fine-mapping mutations under natural selection

Author

Listed:
  • Vasili Pankratov

    (University of Tartu, Institute of Genomics, Centre for Genomics, Evolution and Medicine)

  • Milyausha Yunusbaeva

    (ITMO University, SCAMT Institute)

  • Sergei Ryakhovsky

    (ITMO University, SCAMT Institute)

  • Maksym Zarodniuk

    (University of Tartu, Institute of Bio- and Translational Medicine)

  • Bayazit Yunusbayev

    (University of Tartu, Institute of Genomics, Centre for Genomics, Evolution and Medicine
    ITMO University, SCAMT Institute)

Abstract

Pathogen-driven selection shaped adaptive mutations in immunity genes, including those contributing to inflammatory disorders. Functional characterization of such adaptive variants can shed light on disease biology and past adaptations. This popular idea, however, was difficult to test due to challenges in pinpointing adaptive mutations in selection footprints. In this study, using a local-tree-based approach, we show that 28% of risk loci (153/535) in 21 inflammatory disorders bear footprints of moderate and weak selection, and part of them are population specific. Weak selection footprints allow partial fine-mapping, and we show that in 19% (29/153) of the risk loci under selection, candidate disease variants are hitchhikers, and only in 39% of cases they are likely selection targets. We predict function for a subset of these selected SNPs and highlight examples of antagonistic pleiotropy. We conclude by offering disease variants under selection that can be tested functionally using infectious agents and other stressors to decipher the poorly understood link between environmental stressors and genetic risk in inflammatory conditions.

Suggested Citation

  • Vasili Pankratov & Milyausha Yunusbaeva & Sergei Ryakhovsky & Maksym Zarodniuk & Bayazit Yunusbayev, 2022. "Prioritizing autoimmunity risk variants for functional analyses by fine-mapping mutations under natural selection," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34461-9
    DOI: 10.1038/s41467-022-34461-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34461-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34461-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yukihide Momozawa & Julia Dmitrieva & Emilie Théâtre & Valérie Deffontaine & Souad Rahmouni & Benoît Charloteaux & François Crins & Elisa Docampo & Mahmoud Elansary & Ann-Stephan Gori & Christelle Lec, 2018. "IBD risk loci are enriched in multigenic regulatory modules encompassing putative causative genes," Nature Communications, Nature, vol. 9(1), pages 1-18, December.
    2. Aaron J Stern & Peter R Wilton & Rasmus Nielsen, 2019. "An approximate full-likelihood method for inferring selection and allele frequency trajectories from DNA sequence data," PLOS Genetics, Public Library of Science, vol. 15(9), pages 1-32, September.
    3. Lauren Alpert Sugden & Elizabeth G. Atkinson & Annie P. Fischer & Stephen Rong & Brenna M. Henn & Sohini Ramachandran, 2018. "Localization of adaptive variants in human genomes using averaged one-dependence estimation," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
    4. Jerome Kelleher & Alison M Etheridge & Gilean McVean, 2016. "Efficient Coalescent Simulation and Genealogical Analysis for Large Sample Sizes," PLOS Computational Biology, Public Library of Science, vol. 12(5), pages 1-22, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael DeGiorgio & Zachary A Szpiech, 2022. "A spatially aware likelihood test to detect sweeps from haplotype distributions," PLOS Genetics, Public Library of Science, vol. 18(4), pages 1-37, April.
    2. Andrea Fulgione & Célia Neto & Ahmed F. Elfarargi & Emmanuel Tergemina & Shifa Ansari & Mehmet Göktay & Herculano Dinis & Nina Döring & Pádraic J. Flood & Sofia Rodriguez-Pacheco & Nora Walden & Marcu, 2022. "Parallel reduction in flowering time from de novo mutations enable evolutionary rescue in colonizing lineages," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Sergio F. Nigenda-Morales & Meixi Lin & Paulina G. Nuñez-Valencia & Christopher C. Kyriazis & Annabel C. Beichman & Jacqueline A. Robinson & Aaron P. Ragsdale & Jorge Urbán R. & Frederick I. Archer & , 2023. "The genomic footprint of whaling and isolation in fin whale populations," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Ralph, Peter L., 2019. "An empirical approach to demographic inference with genomic data," Theoretical Population Biology, Elsevier, vol. 127(C), pages 91-101.
    5. Zihao Wang & Wenxi Wang & Xiaoming Xie & Yongfa Wang & Zhengzhao Yang & Huiru Peng & Mingming Xin & Yingyin Yao & Zhaorong Hu & Jie Liu & Zhenqi Su & Chaojie Xie & Baoyun Li & Zhongfu Ni & Qixin Sun &, 2022. "Dispersed emergence and protracted domestication of polyploid wheat uncovered by mosaic ancestral haploblock inference," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Jia Li & Alan J. Simmons & Caroline V. Hawkins & Sophie Chiron & Marisol A. Ramirez-Solano & Naila Tasneem & Harsimran Kaur & Yanwen Xu & Frank Revetta & Paige N. Vega & Shunxing Bao & Can Cui & Regin, 2024. "Identification and multimodal characterization of a specialized epithelial cell type associated with Crohn’s disease," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    7. Ali Mahmoudi & Jere Koskela & Jerome Kelleher & Yao-ban Chan & David Balding, 2022. "Bayesian inference of ancestral recombination graphs," PLOS Computational Biology, Public Library of Science, vol. 18(3), pages 1-15, March.
    8. Kerdoncuff, Elise & Lambert, Amaury & Achaz, Guillaume, 2020. "Testing for population decline using maximal linkage disequilibrium blocks," Theoretical Population Biology, Elsevier, vol. 134(C), pages 171-181.
    9. Parul Johri & Wolfgang Stephan & Jeffrey D Jensen, 2022. "Soft selective sweeps: Addressing new definitions, evaluating competing models, and interpreting empirical outliers," PLOS Genetics, Public Library of Science, vol. 18(2), pages 1-12, February.
    10. Simone Rubinacci & Olivier Delaneau & Jonathan Marchini, 2020. "Genotype imputation using the Positional Burrows Wheeler Transform," PLOS Genetics, Public Library of Science, vol. 16(11), pages 1-19, November.
    11. Miró Pina, Verónica & Joly, Émilien & Siri-Jégousse, Arno, 2023. "Estimating the Lambda measure in multiple-merger coalescents," Theoretical Population Biology, Elsevier, vol. 154(C), pages 94-101.
    12. Sam Tallman & Maria das Dores Sungo & Sílvio Saranga & Sandra Beleza, 2023. "Whole genomes from Angola and Mozambique inform about the origins and dispersals of major African migrations," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Victoria L. Sork & Shawn J. Cokus & Sorel T. Fitz-Gibbon & Aleksey V. Zimin & Daniela Puiu & Jesse A. Garcia & Paul F. Gugger & Claudia L. Henriquez & Ying Zhen & Kirk E. Lohmueller & Matteo Pellegrin, 2022. "High-quality genome and methylomes illustrate features underlying evolutionary success of oaks," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    14. Ashley Budu-Aggrey & Anna Kilanowski & Maria K. Sobczyk & Suyash S. Shringarpure & Ruth Mitchell & Kadri Reis & Anu Reigo & Reedik Mägi & Mari Nelis & Nao Tanaka & Ben M. Brumpton & Laurent F. Thomas , 2023. "European and multi-ancestry genome-wide association meta-analysis of atopic dermatitis highlights importance of systemic immune regulation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    15. Max Lundberg & Alexander Mackintosh & Anna Petri & Staffan Bensch, 2023. "Inversions maintain differences between migratory phenotypes of a songbird," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    16. Mathilde André & Nicolas Brucato & Georgi Hudjasov & Vasili Pankratov & Danat Yermakovich & Francesco Montinaro & Rita Kreevan & Jason Kariwiga & John Muke & Anne Boland & Jean-François Deleuze & Vinc, 2024. "Positive selection in the genomes of two Papua New Guinean populations at distinct altitude levels," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    17. Jerome Kelleher & Kevin R Thornton & Jaime Ashander & Peter L Ralph, 2018. "Efficient pedigree recording for fast population genetics simulation," PLOS Computational Biology, Public Library of Science, vol. 14(11), pages 1-21, November.
    18. Deng, Yun & Song, Yun S. & Nielsen, Rasmus, 2021. "The distribution of waiting distances in ancestral recombination graphs," Theoretical Population Biology, Elsevier, vol. 141(C), pages 34-43.
    19. Arianna Landini & Irena Trbojević-Akmačić & Pau Navarro & Yakov A. Tsepilov & Sodbo Z. Sharapov & Frano Vučković & Ozren Polašek & Caroline Hayward & Tea Petrović & Marija Vilaj & Yurii S. Aulchenko &, 2022. "Genetic regulation of post-translational modification of two distinct proteins," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    20. Brieuc Lehmann & Maxine Mackintosh & Gil McVean & Chris Holmes, 2023. "Optimal strategies for learning multi-ancestry polygenic scores vary across traits," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34461-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.