IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40355-1.html
   My bibliography  Save this article

Evolutionary genomics of camouflage innovation in the orchid mantis

Author

Listed:
  • Guangping Huang

    (Chinese Academy of Sciences)

  • Lingyun Song

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xin Du

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xin Huang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Fuwen Wei

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Jiangxi Agricultural University)

Abstract

The orchid mantises achieve camouflage with morphological modifications in body color and pattern, providing an interesting model for understanding phenotypic innovation. However, a reference genome is lacking for the order Mantodea. To unveil the mechanisms of plant-mimicking body coloration and patterns, we performed de novo assembly of two chromosome-level genomes of the orchid mantis and its close relative, the dead leaf mantis. Comparative genomic analysis revealed that the Scarlet gene plays an important role in the synthesis of xanthommatin, an important pigment for mantis camouflage coloration. Combining developmental transcriptomic analysis and genetic engineering experiments, we found that the cuticle was an essential component of the ‘petal-like’ enlargement, and specific expression in the ventral femur was controlled by Wnt signaling. The prolonged expression of Ultrabithorax (Ubx) accompanied by femoral expansion suggested that Ubx determines leg remodeling in the early developmental stage. We also found evidence of evolution of the Trypsin gene family for insectivory adaptation and ecdysone-dependent sexual dimorphism in body size. Overall, our study presents new genome catalogs and reveals the genetic and evolutionary mechanisms underlying the unique camouflage of the praying mantis, providing evolutionary developmental insights into phenotypic innovation and adaptation.

Suggested Citation

  • Guangping Huang & Lingyun Song & Xin Du & Xin Huang & Fuwen Wei, 2023. "Evolutionary genomics of camouflage innovation in the orchid mantis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40355-1
    DOI: 10.1038/s41467-023-40355-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40355-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40355-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Romain Garrouste & Sylvain Hugel & Lauriane Jacquelin & Pierre Rostan & J.-Sébastien Steyer & Laure Desutter-Grandcolas & André Nel, 2016. "Insect mimicry of plants dates back to the Permian," Nature Communications, Nature, vol. 7(1), pages 1-6, December.
    2. Heng Li & Richard Durbin, 2011. "Inference of human population history from individual whole-genome sequences," Nature, Nature, vol. 475(7357), pages 493-496, July.
    3. Wei Zhang & Erica Westerman & Eyal Nitzany & Stephanie Palmer & Marcus R. Kronforst, 2017. "Tracing the origin and evolution of supergene mimicry in butterflies," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kerdoncuff, Elise & Lambert, Amaury & Achaz, Guillaume, 2020. "Testing for population decline using maximal linkage disequilibrium blocks," Theoretical Population Biology, Elsevier, vol. 134(C), pages 171-181.
    2. Ya-Mei Ding & Xiao-Xu Pang & Yu Cao & Wei-Ping Zhang & Susanne S. Renner & Da-Yong Zhang & Wei-Ning Bai, 2023. "Genome structure-based Juglandaceae phylogenies contradict alignment-based phylogenies and substitution rates vary with DNA repair genes," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Romain Fournier & Zoi Tsangalidou & David Reich & Pier Francesco Palamara, 2023. "Haplotype-based inference of recent effective population size in modern and ancient DNA samples," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Legried, Brandon & Terhorst, Jonathan, 2022. "Rates of convergence in the two-island and isolation-with-migration models," Theoretical Population Biology, Elsevier, vol. 147(C), pages 16-27.
    5. Jörn Bethune & April Kleppe & Søren Besenbacher, 2022. "A method to build extended sequence context models of point mutations and indels," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Carmi, Shai & Wilton, Peter R. & Wakeley, John & Pe’er, Itsik, 2014. "A renewal theory approach to IBD sharing," Theoretical Population Biology, Elsevier, vol. 97(C), pages 35-48.
    7. Aoki, Kenichi & Wakano, Joe Yuichiro, 2022. "Hominin forager technology, food sharing, and diet breadth," Theoretical Population Biology, Elsevier, vol. 144(C), pages 37-48.
    8. Yupeng Sang & Zhiqin Long & Xuming Dan & Jiajun Feng & Tingting Shi & Changfu Jia & Xinxin Zhang & Qiang Lai & Guanglei Yang & Hongying Zhang & Xiaoting Xu & Huanhuan Liu & Yuanzhong Jiang & Pär K. In, 2022. "Genomic insights into local adaptation and future climate-induced vulnerability of a keystone forest tree in East Asia," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    9. Kimmel, Marek & Wojdyła, Tomasz, 2016. "Genetic demographic networks: Mathematical model and applications," Theoretical Population Biology, Elsevier, vol. 111(C), pages 75-86.
    10. Jason Flannick & Joshua M Korn & Pierre Fontanillas & George B Grant & Eric Banks & Mark A Depristo & David Altshuler, 2012. "Efficiency and Power as a Function of Sequence Coverage, SNP Array Density, and Imputation," PLOS Computational Biology, Public Library of Science, vol. 8(7), pages 1-13, July.
    11. Yee Wen Low & Sitaram Rajaraman & Crystal M. Tomlin & Joffre Ali Ahmad & Wisnu H. Ardi & Kate Armstrong & Parusuraman Athen & Ahmad Berhaman & Ruth E. Bone & Martin Cheek & Nicholas R. W. Cho & Le Min, 2022. "Genomic insights into rapid speciation within the world’s largest tree genus Syzygium," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    12. José Cerca & Bent Petersen & José Miguel Lazaro-Guevara & Angel Rivera-Colón & Siri Birkeland & Joel Vizueta & Siyu Li & Qionghou Li & João Loureiro & Chatchai Kosawang & Patricia Jaramillo Díaz & Gon, 2022. "The genomic basis of the plant island syndrome in Darwin’s giant daisies," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    13. Rong Wang & Chao-Nan Liu & Simon T. Segar & Yu-Ting Jiang & Kai-Jian Zhang & Kai Jiang & Gang Wang & Jing Cai & Lu-Fan Chen & Shan Chen & Jing Cheng & Stephen G. Compton & Jun-Yin Deng & Yuan-Yuan Din, 2024. "Dipterocarpoidae genomics reveal their demography and adaptations to Asian rainforests," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    14. Jerome Kelleher & Alison M Etheridge & Gilean McVean, 2016. "Efficient Coalescent Simulation and Genealogical Analysis for Large Sample Sizes," PLOS Computational Biology, Public Library of Science, vol. 12(5), pages 1-22, May.
    15. Deng, Yun & Song, Yun S. & Nielsen, Rasmus, 2021. "The distribution of waiting distances in ancestral recombination graphs," Theoretical Population Biology, Elsevier, vol. 141(C), pages 34-43.
    16. Ran Tian & Yaolei Zhang & Hui Kang & Fan Zhang & Zhihong Jin & Jiahao Wang & Peijun Zhang & Xuming Zhou & Janet M. Lanyon & Helen L. Sneath & Lucy Woolford & Guangyi Fan & Songhai Li & Inge Seim, 2024. "Sirenian genomes illuminate the evolution of fully aquatic species within the mammalian superorder afrotheria," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    17. Ait Kaci Azzou, S. & Larribe, F. & Froda, S., 2016. "Inferring the demographic history from DNA sequences: An importance sampling approach based on non-homogeneous processes," Theoretical Population Biology, Elsevier, vol. 111(C), pages 16-27.
    18. Gideon S Bradburd & Peter L Ralph & Graham M Coop, 2016. "A Spatial Framework for Understanding Population Structure and Admixture," PLOS Genetics, Public Library of Science, vol. 12(1), pages 1-38, January.
    19. Juraj Bergman & Rasmus Ø. Pedersen & Erick J. Lundgren & Rhys T. Lemoine & Sophie Monsarrat & Elena A. Pearce & Mikkel H. Schierup & Jens-Christian Svenning, 2023. "Worldwide Late Pleistocene and Early Holocene population declines in extant megafauna are associated with Homo sapiens expansion rather than climate change," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Per Unneberg & Mårten Larsson & Anna Olsson & Ola Wallerman & Anna Petri & Ignas Bunikis & Olga Vinnere Pettersson & Chiara Papetti & Astthor Gislason & Henrik Glenner & Joan E. Cartes & Leocadio Blan, 2024. "Ecological genomics in the Northern krill uncovers loci for local adaptation across ocean basins," Nature Communications, Nature, vol. 15(1), pages 1-29, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40355-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.