IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v87y2013icp105-119.html
   My bibliography  Save this article

Inference in two dimensions: Allele frequencies versus lengths of shared sequence blocks

Author

Listed:
  • Barton, N.H.
  • Etheridge, A.M.
  • Kelleher, J.
  • Véber, A.

Abstract

We outline two approaches to inference of neighbourhood size, N, and dispersal rate, σ2, based on either allele frequencies or on the lengths of sequence blocks that are shared between genomes. Over intermediate timescales (10–100 generations, say), populations that live in two dimensions approach a quasi-equilibrium that is independent of both their local structure and their deeper history. Over such scales, the standardised covariance of allele frequencies (i.e. pairwise FST) falls with the logarithm of distance, and depends only on neighbourhood size, N, and a ‘local scale’, κ; the rate of gene flow, σ2, cannot be inferred. We show how spatial correlations can be accounted for, assuming a Gaussian distribution of allele frequencies, giving maximum likelihood estimates of N and κ. Alternatively, inferences can be based on the distribution of the lengths of sequence that are identical between blocks of genomes: long blocks (>0.1 cM, say) tell us about intermediate timescales, over which we assume a quasi-equilibrium. For large neighbourhood size, the distribution of long blocks is given directly by the classical Wright–Malécot formula; this relationship can be used to infer both N and σ2. With small neighbourhood size, there is an appreciable chance that recombinant lineages will coalesce back before escaping into the distant past. For this case, we show that if genomes are sampled from some distance apart, then the distribution of lengths of blocks that are identical in state is geometric, with a mean that depends on N and σ2.

Suggested Citation

  • Barton, N.H. & Etheridge, A.M. & Kelleher, J. & Véber, A., 2013. "Inference in two dimensions: Allele frequencies versus lengths of shared sequence blocks," Theoretical Population Biology, Elsevier, vol. 87(C), pages 105-119.
  • Handle: RePEc:eee:thpobi:v:87:y:2013:i:c:p:105-119
    DOI: 10.1016/j.tpb.2013.03.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580913000233
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2013.03.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nick Patterson & Daniel J. Richter & Sante Gnerre & Eric S. Lander & David Reich, 2006. "Genetic evidence for complex speciation of humans and chimpanzees," Nature, Nature, vol. 441(7097), pages 1103-1108, June.
    2. Heng Li & Richard Durbin, 2011. "Inference of human population history from individual whole-genome sequences," Nature, Nature, vol. 475(7357), pages 493-496, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kelleher, J. & Etheridge, A.M. & Barton, N.H., 2014. "Coalescent simulation in continuous space: Algorithms for large neighbourhood size," Theoretical Population Biology, Elsevier, vol. 95(C), pages 13-23.
    2. Heuer, Benjamin & Sturm, Anja, 2013. "On spatial coalescents with multiple mergers in two dimensions," Theoretical Population Biology, Elsevier, vol. 87(C), pages 90-104.
    3. Sainudiin, Raazesh & Véber, Amandine, 2018. "Full likelihood inference from the site frequency spectrum based on the optimal tree resolution," Theoretical Population Biology, Elsevier, vol. 124(C), pages 1-15.
    4. Kelleher, J. & Etheridge, A.M. & Véber, A. & Barton, N.H., 2016. "Spread of pedigree versus genetic ancestry in spatially distributed populations," Theoretical Population Biology, Elsevier, vol. 108(C), pages 1-12.
    5. Guindon, Stéphane & Guo, Hongbin & Welch, David, 2016. "Demographic inference under the coalescent in a spatial continuum," Theoretical Population Biology, Elsevier, vol. 111(C), pages 43-50.
    6. Jerome Kelleher & Alison M Etheridge & Gilean McVean, 2016. "Efficient Coalescent Simulation and Genealogical Analysis for Large Sample Sizes," PLOS Computational Biology, Public Library of Science, vol. 12(5), pages 1-22, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gideon S Bradburd & Peter L Ralph & Graham M Coop, 2016. "A Spatial Framework for Understanding Population Structure and Admixture," PLOS Genetics, Public Library of Science, vol. 12(1), pages 1-38, January.
    2. Juraj Bergman & Rasmus Ø. Pedersen & Erick J. Lundgren & Rhys T. Lemoine & Sophie Monsarrat & Elena A. Pearce & Mikkel H. Schierup & Jens-Christian Svenning, 2023. "Worldwide Late Pleistocene and Early Holocene population declines in extant megafauna are associated with Homo sapiens expansion rather than climate change," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Per Unneberg & Mårten Larsson & Anna Olsson & Ola Wallerman & Anna Petri & Ignas Bunikis & Olga Vinnere Pettersson & Chiara Papetti & Astthor Gislason & Henrik Glenner & Joan E. Cartes & Leocadio Blan, 2024. "Ecological genomics in the Northern krill uncovers loci for local adaptation across ocean basins," Nature Communications, Nature, vol. 15(1), pages 1-29, December.
    4. Ya-Mei Ding & Xiao-Xu Pang & Yu Cao & Wei-Ping Zhang & Susanne S. Renner & Da-Yong Zhang & Wei-Ning Bai, 2023. "Genome structure-based Juglandaceae phylogenies contradict alignment-based phylogenies and substitution rates vary with DNA repair genes," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Romain Fournier & Zoi Tsangalidou & David Reich & Pier Francesco Palamara, 2023. "Haplotype-based inference of recent effective population size in modern and ancient DNA samples," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Steinrücken, Matthias & Paul, Joshua S. & Song, Yun S., 2013. "A sequentially Markov conditional sampling distribution for structured populations with migration and recombination," Theoretical Population Biology, Elsevier, vol. 87(C), pages 51-61.
    7. Guangping Huang & Lingyun Song & Xin Du & Xin Huang & Fuwen Wei, 2023. "Evolutionary genomics of camouflage innovation in the orchid mantis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Legried, Brandon & Terhorst, Jonathan, 2022. "Rates of convergence in the two-island and isolation-with-migration models," Theoretical Population Biology, Elsevier, vol. 147(C), pages 16-27.
    9. Jörn Bethune & April Kleppe & Søren Besenbacher, 2022. "A method to build extended sequence context models of point mutations and indels," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Wilton, Peter R. & Baduel, Pierre & Landon, Matthieu M. & Wakeley, John, 2017. "Population structure and coalescence in pedigrees: Comparisons to the structured coalescent and a framework for inference," Theoretical Population Biology, Elsevier, vol. 115(C), pages 1-12.
    11. Hobolth, Asger & Jensen, Jens Ledet, 2014. "Markovian approximation to the finite loci coalescent with recombination along multiple sequences," Theoretical Population Biology, Elsevier, vol. 98(C), pages 48-58.
    12. Carmi, Shai & Wilton, Peter R. & Wakeley, John & Pe’er, Itsik, 2014. "A renewal theory approach to IBD sharing," Theoretical Population Biology, Elsevier, vol. 97(C), pages 35-48.
    13. Kerdoncuff, Elise & Lambert, Amaury & Achaz, Guillaume, 2020. "Testing for population decline using maximal linkage disequilibrium blocks," Theoretical Population Biology, Elsevier, vol. 134(C), pages 171-181.
    14. Youjie Zhao & Chengyong Su & Bo He & Ruie Nie & Yunliang Wang & Junye Ma & Jingyu Song & Qun Yang & Jiasheng Hao, 2023. "Dispersal from the Qinghai-Tibet plateau by a high-altitude butterfly is associated with rapid expansion and reorganization of its genome," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Xiaodong Liu & Long Lin & Mikkel-Holger S. Sinding & Laura D. Bertola & Kristian Hanghøj & Liam Quinn & Genís Garcia-Erill & Malthe Sebro Rasmussen & Mikkel Schubert & Patrícia Pečnerová & Renzo F. Ba, 2024. "Introgression and disruption of migration routes have shaped the genetic integrity of wildebeest populations," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    16. He Yu & Alexandra Jamieson & Ardern Hulme-Beaman & Chris J. Conroy & Becky Knight & Camilla Speller & Hiba Al-Jarah & Heidi Eager & Alexandra Trinks & Gamini Adikari & Henriette Baron & Beate Böhlendo, 2022. "Palaeogenomic analysis of black rat (Rattus rattus) reveals multiple European introductions associated with human economic history," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    17. Aoki, Kenichi & Wakano, Joe Yuichiro, 2022. "Hominin forager technology, food sharing, and diet breadth," Theoretical Population Biology, Elsevier, vol. 144(C), pages 37-48.
    18. DeGiorgio, Michael & Rosenberg, Noah A., 2016. "Consistency and inconsistency of consensus methods for inferring species trees from gene trees in the presence of ancestral population structure," Theoretical Population Biology, Elsevier, vol. 110(C), pages 12-24.
    19. Yuan Yin & Huizhong Fan & Botong Zhou & Yibo Hu & Guangyi Fan & Jinhuan Wang & Fan Zhou & Wenhui Nie & Chenzhou Zhang & Lin Liu & Zhenyu Zhong & Wenbo Zhu & Guichun Liu & Zeshan Lin & Chang Liu & Jion, 2021. "Molecular mechanisms and topological consequences of drastic chromosomal rearrangements of muntjac deer," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    20. Yupeng Sang & Zhiqin Long & Xuming Dan & Jiajun Feng & Tingting Shi & Changfu Jia & Xinxin Zhang & Qiang Lai & Guanglei Yang & Hongying Zhang & Xiaoting Xu & Huanhuan Liu & Yuanzhong Jiang & Pär K. In, 2022. "Genomic insights into local adaptation and future climate-induced vulnerability of a keystone forest tree in East Asia," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:87:y:2013:i:c:p:105-119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.