IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v122y2018icp128-136.html
   My bibliography  Save this article

A parametric interpretation of Bayesian Nonparametric Inference from Gene Genealogies: Linking ecological, population genetics and evolutionary processes

Author

Listed:
  • Ponciano, José Miguel

Abstract

Using a nonparametric Bayesian approach Palacios and Minin (2013) dramatically improved the accuracy, precision of Bayesian inference of population size trajectories from gene genealogies. These authors proposed an extension of a Gaussian Process (GP) nonparametric inferential method for the intensity function of non-homogeneous Poisson processes. They found that not only the statistical properties of the estimators were improved with their method, but also, that key aspects of the demographic histories were recovered. The authors’ work represents the first Bayesian nonparametric solution to this inferential problem because they specify a convenient prior belief without a particular functional form on the population trajectory. Their approach works so well and provides such a profound understanding of the biological process, that the question arises as to how truly “biology-free†their approach really is. Using well-known concepts of stochastic population dynamics, here I demonstrate that in fact, Palacios and Minin’s GP model can be cast as a parametric population growth model with density dependence and environmental stochasticity. Making this link between population genetics and stochastic population dynamics modeling provides novel insights into eliciting biologically meaningful priors for the trajectory of the effective population size. The results presented here also bring novel understanding of GP as models for the evolution of a trait. Thus, the ecological principles foundation of Palacios and Minin (2013)’s prior adds to the conceptual and scientific value of these authors’ inferential approach. I conclude this note by listing a series of insights brought about by this connection with Ecology.

Suggested Citation

  • Ponciano, José Miguel, 2018. "A parametric interpretation of Bayesian Nonparametric Inference from Gene Genealogies: Linking ecological, population genetics and evolutionary processes," Theoretical Population Biology, Elsevier, vol. 122(C), pages 128-136.
  • Handle: RePEc:eee:thpobi:v:122:y:2018:i:c:p:128-136
    DOI: 10.1016/j.tpb.2017.10.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580917300369
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2017.10.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brett A. Melbourne & Alan Hastings, 2008. "Extinction risk depends strongly on factors contributing to stochasticity," Nature, Nature, vol. 454(7200), pages 100-103, July.
    2. Julia A. Palacios & Vladimir N. Minin, 2013. "Gaussian Process-Based Bayesian Nonparametric Inference of Population Size Trajectories from Gene Genealogies," Biometrics, The International Biometric Society, vol. 69(1), pages 8-18, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Méndez, Vicenç & Llopis, Isaac & Campos, Daniel & Horsthemke, Werner, 2010. "Extinction conditions for isolated populations affected by environmental stochasticity," Theoretical Population Biology, Elsevier, vol. 77(4), pages 250-256.
    2. Vilenkin, Boris & Chikatunov, Vladimir I. & Pavlíček, Tomáš, 2009. "The pattern of species turnover resulting from stochastic population dynamics: The model and field data," Ecological Modelling, Elsevier, vol. 220(5), pages 657-661.
    3. Zhao, Yu & Yuan, Sanling, 2016. "Stability in distribution of a stochastic hybrid competitive Lotka–Volterra model with Lévy jumps," Chaos, Solitons & Fractals, Elsevier, vol. 85(C), pages 98-109.
    4. Anna Kuparinen & Robert B O'Hara & Juha Merilä, 2008. "Probabilistic Models for Continuous Ontogenetic Transition Processes," PLOS ONE, Public Library of Science, vol. 3(11), pages 1-7, November.
    5. Lorenzo Cappello & Swarnadip Ghosh & Julia A. Palacios, 2020. "Discussion on “Horseshoe‐based Bayesian nonparametric estimation of effective population size trajectories” by James R. Faulkner, Andrew F. Magee, Beth Shapiro, and Vladimir N. Minin," Biometrics, The International Biometric Society, vol. 76(3), pages 691-694, September.
    6. Eriksson, A. & Elías-Wolff, F. & Mehlig, B., 2013. "Metapopulation dynamics on the brink of extinction," Theoretical Population Biology, Elsevier, vol. 83(C), pages 101-122.
    7. Steiner, Ulrich K. & Tuljapurkar, Shripad, 2020. "Drivers of diversity in individual life courses: Sensitivity of the population entropy of a Markov chain," Theoretical Population Biology, Elsevier, vol. 133(C), pages 159-167.
    8. Gledhill, Michelle & Van Kirk, Robert W., 2011. "Modeling effects of toxin exposure in fish on long-term population size, with an application to selenium toxicity in bluegill (Lepomis macrochirus)," Ecological Modelling, Elsevier, vol. 222(19), pages 3587-3597.
    9. Eleanor S Devenish-Nelson & Philip A Stephens & Stephen Harris & Carl Soulsbury & Shane A Richards, 2013. "Does Litter Size Variation Affect Models of Terrestrial Carnivore Extinction Risk and Management?," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-9, February.
    10. Izquierdo, Salvador & Dopazo, César & Fueyo, Norberto, 2010. "Supply-cost curves for geographically distributed renewable-energy resources," Energy Policy, Elsevier, vol. 38(1), pages 667-672, January.
    11. Vuilleumier, Séverine & Possingham, Hugh P., 2012. "Interacting populations in heterogeneous environments," Ecological Modelling, Elsevier, vol. 228(C), pages 96-105.
    12. Jacob LaRiviere & David Kling & James N Sanchirico & Charles Sims & Michael Springborn, 2018. "The Treatment of Uncertainty and Learning in the Economics of Natural Resource and Environmental Management," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 92-112.
    13. Liu, He & Dai, Chuanjun & Yu, Hengguo & Guo, Qing & Li, Jianbing & Hao, Aimin & Kikuchi, Jun & Zhao, Min, 2023. "Dynamics of a stochastic non-autonomous phytoplankton–zooplankton system involving toxin-producing phytoplankton and impulsive perturbations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 368-386.
    14. Ponciano, José M. & Taper, Mark L. & Dennis, Brian, 2018. "Ecological change points: The strength of density dependence and the loss of history," Theoretical Population Biology, Elsevier, vol. 121(C), pages 45-59.
    15. Donovan, Pierce & Springborn, Michael, 2022. "Balancing conservation and commerce: A shadow value viability approach for governing bycatch," Journal of Environmental Economics and Management, Elsevier, vol. 114(C).
    16. Chen, Aimin & Wang, Pei & Zhou, Tianshou & Tian, Tianhai, 2022. "Balance of positive and negative regulation for trade-off between efficiency and resilience of high-dimensional networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    17. Erickson, Richard A. & Cox, Stephen B. & Oates, Jessica L. & Anderson, Todd A. & Salice, Christopher J. & Long, Kevin R., 2014. "A Daphnia population model that considers pesticide exposure and demographic stochasticity," Ecological Modelling, Elsevier, vol. 275(C), pages 37-47.
    18. Garnier, Aurelie & Darmency, Henri & Tricault, Yann & Chèvre, Anne-Marie & Lecomte, Jane, 2014. "A stochastic cellular model with uncertainty analysis to assess the risk of transgene invasion after crop-wild hybridization: Oilseed rape and wild radish as a case study," Ecological Modelling, Elsevier, vol. 276(C), pages 85-94.
    19. Nothaaß, Dorian & Taubert, Franziska & Huth, Andreas & Clark, Adam Thomas, 2023. "Modelling species invasion using a metapopulation model with variable mortality and stochastic birth-death processes," Ecological Modelling, Elsevier, vol. 481(C).
    20. Sloggy, Matthew R. & Kling, David M. & Plantinga, Andrew J., 2020. "Measure twice, cut once: Optimal inventory and harvest under volume uncertainty and stochastic price dynamics," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:122:y:2018:i:c:p:128-136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.