IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v121y2018icp45-59.html
   My bibliography  Save this article

Ecological change points: The strength of density dependence and the loss of history

Author

Listed:
  • Ponciano, José M.
  • Taper, Mark L.
  • Dennis, Brian

Abstract

Change points in the dynamics of animal abundances have extensively been recorded in historical time series records. Little attention has been paid to the theoretical dynamic consequences of such change-points. Here we propose a change-point model of stochastic population dynamics. This investigation embodies a shift of attention from the problem of detecting when a change will occur, to another non-trivial puzzle: using ecological theory to understand and predict the post-breakpoint behavior of the population dynamics. The proposed model and the explicit expressions derived here predict and quantify how density dependence modulates the influence of the pre-breakpoint parameters into the post-breakpoint dynamics. Time series transitioning from one stationary distribution to another contain information about where the process was before the change-point, where is it heading and how long it will take to transition, and here this information is explicitly stated. Importantly, our results provide a direct connection of the strength of density dependence with theoretical properties of dynamic systems, such as the concept of resilience. Finally, we illustrate how to harness such information through maximum likelihood estimation for state–space models, and test the model robustness to widely different forms of compensatory dynamics. The model can be used to estimate important quantities in the theory and practice of population recovery.

Suggested Citation

  • Ponciano, José M. & Taper, Mark L. & Dennis, Brian, 2018. "Ecological change points: The strength of density dependence and the loss of history," Theoretical Population Biology, Elsevier, vol. 121(C), pages 45-59.
  • Handle: RePEc:eee:thpobi:v:121:y:2018:i:c:p:45-59
    DOI: 10.1016/j.tpb.2018.04.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580917300412
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2018.04.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hansen, Bruce E, 1992. "The Likelihood Ratio Test under Nonstandard Conditions: Testing the Markov Switching Model of GNP," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(S), pages 61-82, Suppl. De.
    2. Marc Lavielle & Eric Moulines, 2000. "Least‐squares Estimation of an Unknown Number of Shifts in a Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(1), pages 33-59, January.
    3. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    4. Peter Chesson, 2017. "AEDT: A new concept for ecological dynamics in the ever-changing world," PLOS Biology, Public Library of Science, vol. 15(5), pages 1-13, May.
    5. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    6. Brett A. Melbourne & Alan Hastings, 2008. "Extinction risk depends strongly on factors contributing to stochasticity," Nature, Nature, vol. 454(7200), pages 100-103, July.
    7. Garcia, Rene, 1998. "Asymptotic Null Distribution of the Likelihood Ratio Test in Markov Switching Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(3), pages 763-788, August.
    8. Venkata Jandhyala & Stergios Fotopoulos & Ian MacNeill & Pengyu Liu, 2013. "Inference for single and multiple change-points in time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(4), pages 423-446, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sergei Koulayev & Marc Rysman & Scott Schuh & Joanna Stavins, 2016. "Explaining adoption and use of payment instruments by US consumers," RAND Journal of Economics, RAND Corporation, vol. 47(2), pages 293-325, May.
    2. Chevallier, Julien, 2011. "Evaluating the carbon-macroeconomy relationship: Evidence from threshold vector error-correction and Markov-switching VAR models," Economic Modelling, Elsevier, vol. 28(6), pages 2634-2656.
    3. Chung-Ming Kuan, 2013. "Markov switching model (in Russian)," Quantile, Quantile, issue 11, pages 13-40, December.
    4. Otilia Boldea & Alastair R. Hall, 2013. "Testing structural stability in macroeconometric models," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 9, pages 206-228, Edward Elgar Publishing.
    5. Peter Tillmann, 2003. "The Regime‐Dependent Determination of Credibility: A New Look at European Interest Rate Differentials," German Economic Review, Verein für Socialpolitik, vol. 4(4), pages 409-431, November.
    6. Boldea, Otilia & Hall, Alastair R., 2013. "Estimation and inference in unstable nonlinear least squares models," Journal of Econometrics, Elsevier, vol. 172(1), pages 158-167.
    7. Garcia, Rene & Perron, Pierre, 1996. "An Analysis of the Real Interest Rate under Regime Shifts," The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 111-125, February.
    8. Alessandro Casini & Pierre Perron, 2018. "Structural Breaks in Time Series," Boston University - Department of Economics - Working Papers Series WP2019-02, Boston University - Department of Economics.
    9. Kejriwal, Mohitosh & Perron, Pierre, 2008. "The limit distribution of the estimates in cointegrated regression models with multiple structural changes," Journal of Econometrics, Elsevier, vol. 146(1), pages 59-73, September.
    10. Edoardo Otranto & Giampiero Gallo, 2002. "A Nonparametric Bayesian Approach To Detect The Number Of Regimes In Markov Switching Models," Econometric Reviews, Taylor & Francis Journals, vol. 21(4), pages 477-496.
    11. Meitz, Mika & Saikkonen, Pentti, 2021. "Testing for observation-dependent regime switching in mixture autoregressive models," Journal of Econometrics, Elsevier, vol. 222(1), pages 601-624.
    12. Kim, Chang-Jin & Morley, James C. & Nelson, Charles R., 2001. "Does an intertemporal tradeoff between risk and return explain mean reversion in stock prices?," Journal of Empirical Finance, Elsevier, vol. 8(4), pages 403-426, September.
    13. Lanouar Charfeddine & Dominique Guegan, 2008. "Is it possible to discriminate between different switching regressions models? An empirical investigation," Post-Print halshs-00368358, HAL.
    14. Charfeddine, Lanouar & Klein, Tony & Walther, Thomas, 2018. "Oil Price Changes and U.S. Real GDP Growth: Is this Time Different?," QBS Working Paper Series 2018/03, Queen's University Belfast, Queen's Business School.
    15. Elena Andreou & Eric Ghysels, 2002. "Detecting multiple breaks in financial market volatility dynamics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 579-600.
    16. Lanouar Charfeddine & Dominique Guegan, 2008. "Is it possible to discriminate between different switching regressions models? An empirical investigation," PSE-Ecole d'économie de Paris (Postprint) halshs-00368358, HAL.
    17. Richard G. Anderson & Marcelle Chauvet & Barry Jones, 2015. "Nonlinear Relationship Between Permanent and Transitory Components of Monetary Aggregates and the Economy," Econometric Reviews, Taylor & Francis Journals, vol. 34(1-2), pages 228-254, February.
    18. Seong Yeon Chang & Pierre Perron, 2016. "Inference on a Structural Break in Trend with Fractionally Integrated Errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(4), pages 555-574, July.
    19. Frédérick Demers, 2003. "The Canadian Phillips Curve and Regime Shifting," Staff Working Papers 03-32, Bank of Canada.
    20. Holger Dette & Dominik Wied, 2016. "Detecting relevant changes in time series models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 371-394, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:121:y:2018:i:c:p:45-59. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.