IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v69y2013i1p8-18.html
   My bibliography  Save this article

Gaussian Process-Based Bayesian Nonparametric Inference of Population Size Trajectories from Gene Genealogies

Author

Listed:
  • Julia A. Palacios
  • Vladimir N. Minin

Abstract

No abstract is available for this item.

Suggested Citation

  • Julia A. Palacios & Vladimir N. Minin, 2013. "Gaussian Process-Based Bayesian Nonparametric Inference of Population Size Trajectories from Gene Genealogies," Biometrics, The International Biometric Society, vol. 69(1), pages 8-18, March.
  • Handle: RePEc:bla:biomet:v:69:y:2013:i:1:p:8-18
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/biom.12003
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Diggle, 1985. "A Kernel Method for Smoothing Point Process Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 34(2), pages 138-147, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lorenzo Cappello & Swarnadip Ghosh & Julia A. Palacios, 2020. "Discussion on “Horseshoe‐based Bayesian nonparametric estimation of effective population size trajectories” by James R. Faulkner, Andrew F. Magee, Beth Shapiro, and Vladimir N. Minin," Biometrics, The International Biometric Society, vol. 76(3), pages 691-694, September.
    2. James R. Faulkner & Andrew F. Magee & Beth Shapiro & Vladimir N. Minin, 2020. "Horseshoe‐based Bayesian nonparametric estimation of effective population size trajectories," Biometrics, The International Biometric Society, vol. 76(3), pages 677-690, September.
    3. Michael D Karcher & Julia A Palacios & Trevor Bedford & Marc A Suchard & Vladimir N Minin, 2016. "Quantifying and Mitigating the Effect of Preferential Sampling on Phylodynamic Inference," PLOS Computational Biology, Public Library of Science, vol. 12(3), pages 1-19, March.
    4. Ponciano, José Miguel, 2018. "A parametric interpretation of Bayesian Nonparametric Inference from Gene Genealogies: Linking ecological, population genetics and evolutionary processes," Theoretical Population Biology, Elsevier, vol. 122(C), pages 128-136.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frédéric Lavancier & Ronan Le Guével, 2021. "Spatial birth–death–move processes: Basic properties and estimation of their intensity functions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 798-825, September.
    2. Nicoletta D’Angelo & Marianna Siino & Antonino D’Alessandro & Giada Adelfio, 2022. "Local spatial log-Gaussian Cox processes for seismic data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(4), pages 633-671, December.
    3. Bouezmarni, Taoufik & Rombouts, Jeroen V.K., 2010. "Nonparametric density estimation for positive time series," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 245-261, February.
    4. Giuseppe Espa & Giuseppe Arbia & Diego Giuliani, 2013. "Conditional versus unconditional industrial agglomeration: disentangling spatial dependence and spatial heterogeneity in the analysis of ICT firms’ distribution in Milan," Journal of Geographical Systems, Springer, vol. 15(1), pages 31-50, January.
    5. M. N. M. Lieshout, 2020. "Infill Asymptotics and Bandwidth Selection for Kernel Estimators of Spatial Intensity Functions," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 995-1008, September.
    6. Christopher S Fowler, 2018. "Key assumptions in multiscale segregation measures: How zoning and strength of spatial association condition outcomes," Environment and Planning B, , vol. 45(6), pages 1055-1072, November.
    7. Roba Bairakdar & Debbie Dupuis & Melina Mailhot, 2024. "Deviance Voronoi Residuals for Space-Time Point Process Models: An Application to Earthquake Insurance Risk," Papers 2410.04369, arXiv.org.
    8. Jeffery Caroline & Ozonoff Al & White Laura Forsberg & Pagano Marcello, 2013. "Distance-Based Mapping of Disease Risk," The International Journal of Biostatistics, De Gruyter, vol. 9(2), pages 265-290, May.
    9. Mola-Yudego, Blas & Selkimäki, Mari & González-Olabarria, José Ramón, 2014. "Spatial analysis of the wood pellet production for energy in Europe," Renewable Energy, Elsevier, vol. 63(C), pages 76-83.
    10. Jeanne-Marie R. Stacciarini & Raffaele Vacca & Liang Mao, 2018. "Who and Where: A Socio-Spatial Integrated Approach for Community-Based Health Research," IJERPH, MDPI, vol. 15(7), pages 1-17, June.
    11. Yingqi Zhao & Donglin Zeng & Amy H. Herring & Amy Ising & Anna Waller & David Richardson & Michael R. Kosorok, 2011. "Detecting Disease Outbreaks Using Local Spatiotemporal Methods," Biometrics, The International Biometric Society, vol. 67(4), pages 1508-1517, December.
    12. François Sémécurbe & Cécile Tannier & Stéphane G. Roux, 2019. "Applying two fractal methods to characterise the local and global deviations from scale invariance of built patterns throughout mainland France," Journal of Geographical Systems, Springer, vol. 21(2), pages 271-293, June.
    13. Mishalani, Rabi G. & Koutsopoulos, Haris N., 2002. "Modeling the spatial behavior of infrastructure condition," Transportation Research Part B: Methodological, Elsevier, vol. 36(2), pages 171-194, February.
    14. Peng Hou & Xiaojian Yi & Haiping Dong, 2020. "A Spatial Statistic Based Risk Assessment Approach to Prioritize the Pipeline Inspection of the Pipeline Network," Energies, MDPI, vol. 13(3), pages 1-16, February.
    15. Edith Gabriel, 2014. "Estimating Second-Order Characteristics of Inhomogeneous Spatio-Temporal Point Processes," Methodology and Computing in Applied Probability, Springer, vol. 16(2), pages 411-431, June.
    16. Ondřej Šedivý & Antti Penttinen, 2014. "Intensity estimation for inhomogeneous Gibbs point process with covariates-dependent chemical activity," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 68(3), pages 225-249, August.
    17. Jesper Møller & Carlos Díaz‐Avalos, 2010. "Structured Spatio‐Temporal Shot‐Noise Cox Point Process Models, with a View to Modelling Forest Fires," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(1), pages 2-25, March.
    18. Julie McIntyre & Ronald P. Barry, 2012. "Bivariate deconvolution with SIMEX: an application to mapping Alaska earthquake density," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(2), pages 297-308, April.
    19. Marcon, Eric & Puech, Florence, 2017. "A typology of distance-based measures of spatial concentration," Regional Science and Urban Economics, Elsevier, vol. 62(C), pages 56-67.
    20. Wenyang Zhang & Qiwei Yao & Howell Tong & Nils Chr. Stenseth, 2003. "Smoothing for Spatiotemporal Models and Its Application to Modeling Muskrat-Mink Interaction," Biometrics, The International Biometric Society, vol. 59(4), pages 813-821, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:69:y:2013:i:1:p:8-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.