Accurate forecasts and comparative analysis of Chinese CO2 emissions using a superior time-delay grey model
Author
Abstract
Suggested Citation
DOI: 10.1016/j.eneco.2023.107013
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Xu, Guangyue & Schwarz, Peter & Yang, Hualiu, 2019. "Determining China's CO2 emissions peak with a dynamic nonlinear artificial neural network approach and scenario analysis," Energy Policy, Elsevier, vol. 128(C), pages 752-762.
- Chen, Yan & Lifeng, Wu & Lianyi, Liu & Kai, Zhang, 2020. "Fractional Hausdorff grey model and its properties," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
- Ye, Li & Yang, Deling & Dang, Yaoguo & Wang, Junjie, 2022. "An enhanced multivariable dynamic time-delay discrete grey forecasting model for predicting China's carbon emissions," Energy, Elsevier, vol. 249(C).
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Charfeddine, Lanouar & Kahia, Montassar, 2019. "Impact of renewable energy consumption and financial development on CO2 emissions and economic growth in the MENA region: A panel vector autoregressive (PVAR) analysis," Renewable Energy, Elsevier, vol. 139(C), pages 198-213.
- Salahuddin, Mohammad & Gow, Jeff & Ozturk, Ilhan, 2015. "Is the long-run relationship between economic growth, electricity consumption, carbon dioxide emissions and financial development in Gulf Cooperation Council Countries robust?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 317-326.
- Bennedsen, Mikkel & Hillebrand, Eric & Koopman, Siem Jan, 2021.
"Modeling, forecasting, and nowcasting U.S. CO2 emissions using many macroeconomic predictors,"
Energy Economics, Elsevier, vol. 96(C).
- Mikkel Bennedsen & Eric Hillebrand & Siem Jan Koopman, 2019. "Modeling, Forecasting, and Nowcasting U.S. CO2 Emissions Using Many Macroeconomic Predictors," CREATES Research Papers 2019-21, Department of Economics and Business Economics, Aarhus University.
- Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2008. "Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm," Energy Economics, Elsevier, vol. 30(5), pages 2623-2635, September.
- Song Ding & Ruojin Li, 2020. "A New Multivariable Grey Convolution Model Based on Simpson’s Rule and Its Applications," Complexity, Hindawi, vol. 2020, pages 1-14, February.
- Aras, Serkan & Hanifi Van, M., 2022. "An interpretable forecasting framework for energy consumption and CO2 emissions," Applied Energy, Elsevier, vol. 328(C).
- Van den Bergh, Kenneth & Delarue, Erik & D'haeseleer, William, 2013. "Impact of renewables deployment on the CO2 price and the CO2 emissions in the European electricity sector," Energy Policy, Elsevier, vol. 63(C), pages 1021-1031.
- Ding, Song & Zhang, Huahan, 2023. "Forecasting Chinese provincial CO2 emissions: A universal and robust new-information-based grey model," Energy Economics, Elsevier, vol. 121(C).
- Xu, Ning & Ding, Song & Gong, Yande & Bai, Ju, 2019. "Forecasting Chinese greenhouse gas emissions from energy consumption using a novel grey rolling model," Energy, Elsevier, vol. 175(C), pages 218-227.
- Yu, Yantuan & Zhang, Ning, 2021. "Low-carbon city pilot and carbon emission efficiency: Quasi-experimental evidence from China," Energy Economics, Elsevier, vol. 96(C).
- Belbute, José M. & Pereira, Alfredo M., 2020.
"Reference forecasts for CO2 emissions from fossil-fuel combustion and cement production in Portugal,"
Energy Policy, Elsevier, vol. 144(C).
- José M. Belbute & Alfredo M. Pereira, 2019. "Reference Forecasts for CO2 Emissions from Fossil-Fuel Combustion and Cement Production in Portugal," GEE Papers 00126, Gabinete de Estratégia e Estudos, Ministério da Economia, revised Aug 2019.
- Hu, Haisheng & Dong, Wanhao & Zhou, Qian, 2021. "A comparative study on the environmental and economic effects of a resource tax and carbon tax in China: Analysis based on the computable general equilibrium model," Energy Policy, Elsevier, vol. 156(C).
- Özbuğday, Fatih Cemil & Erbas, Bahar Celikkol, 2015. "How effective are energy efficiency and renewable energy in curbing CO2 emissions in the long run? A heterogeneous panel data analysis," Energy, Elsevier, vol. 82(C), pages 734-745.
- Ameyaw, Bismark & Yao, Li & Oppong, Amos & Agyeman, Joy Korang, 2019. "Investigating, forecasting and proposing emission mitigation pathways for CO2 emissions from fossil fuel combustion only: A case study of selected countries," Energy Policy, Elsevier, vol. 130(C), pages 7-21.
- Leerbeck, Kenneth & Bacher, Peder & Junker, Rune Grønborg & Goranović, Goran & Corradi, Olivier & Ebrahimy, Razgar & Tveit, Anna & Madsen, Henrik, 2020. "Short-term forecasting of CO2 emission intensity in power grids by machine learning," Applied Energy, Elsevier, vol. 277(C).
- Xu, Haitao & Pan, Xiongfeng & Guo, Shucen & Lu, Yuduo, 2021. "Forecasting Chinese CO2 emission using a non-linear multi-agent intertemporal optimization model and scenario analysis," Energy, Elsevier, vol. 228(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Junjie & Ye, Li & Ding, Xiaoyu & Dang, Yaoguo, 2024. "A novel seasonal grey prediction model with time-lag and interactive effects for forecasting the photovoltaic power generation," Energy, Elsevier, vol. 304(C).
- Ding, Song & Cai, Zhijian & Qin, Xinghuan & Shen, Xingao, 2024. "Comparative assessment and policy analysis of forecasting quarterly renewable energy demand: Fresh evidence from an innovative seasonal approach with superior matching algorithms," Applied Energy, Elsevier, vol. 367(C).
- Xu, Jie & Wu, Wen-Ze & Liu, Chong & Xie, Wanli & Zhang, Tao, 2024. "An extensive conformable fractional grey model and its application," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
- Xia, Lin & Ren, Youyang & Wang, Yuhong & Pan, Yangyang & Fu, Yiyang, 2024. "Forecasting China's renewable energy consumption using a novel dynamic fractional-order discrete grey multi-power model," Renewable Energy, Elsevier, vol. 233(C).
- Qin, Fuli & Tong, Mingyu & Huang, Ying & Zhang, Yubo, 2024. "Modeling, prediction and analysis of natural gas consumption in China using a novel dynamic nonlinear multivariable grey delay model," Energy, Elsevier, vol. 305(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zeng, Qingshun & Shi, Changfeng & Zhu, Wenjun & Zhi, Jiaqi & Na, Xiaohong, 2023. "Sequential data-driven carbon peaking path simulation research of the Yangtze River Delta urban agglomeration based on semantic mining and heuristic algorithm optimization," Energy, Elsevier, vol. 285(C).
- Yuan, Hong & Ma, Xin & Ma, Minda & Ma, Juan, 2024. "Hybrid framework combining grey system model with Gaussian process and STL for CO2 emissions forecasting in developed countries," Applied Energy, Elsevier, vol. 360(C).
- Hu, Yusha & Man, Yi, 2023. "Energy consumption and carbon emissions forecasting for industrial processes: Status, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
- Ding, Song & Zhang, Huahan, 2023. "Forecasting Chinese provincial CO2 emissions: A universal and robust new-information-based grey model," Energy Economics, Elsevier, vol. 121(C).
- Muhammad Farhan Bashir & Benjiang MA & Muhammad Shahbaz & Zhilun Jiao, 2020. "The nexus between environmental tax and carbon emissions with the roles of environmental technology and financial development," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-20, November.
- Charfeddine, Lanouar & Kahia, Montassar, 2019. "Impact of renewable energy consumption and financial development on CO2 emissions and economic growth in the MENA region: A panel vector autoregressive (PVAR) analysis," Renewable Energy, Elsevier, vol. 139(C), pages 198-213.
- Shi, Changfeng & Zhi, Jiaqi & Yao, Xiao & Zhang, Hong & Yu, Yue & Zeng, Qingshun & Li, Luji & Zhang, Yuxi, 2023. "How can China achieve the 2030 carbon peak goal—a crossover analysis based on low-carbon economics and deep learning," Energy, Elsevier, vol. 269(C).
- Wang, Yudong & Hao, Xianfeng, 2022. "Forecasting the real prices of crude oil: A robust weighted least squares approach," Energy Economics, Elsevier, vol. 116(C).
- Tao XIONG & Chongguang LI & Yukun BAO, 2017. "An improved EEMD-based hybrid approach for the short-term forecasting of hog price in China," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 63(3), pages 136-148.
- Sun, Shaolong & Wang, Shouyang & Wei, Yunjie, 2019. "A new multiscale decomposition ensemble approach for forecasting exchange rates," Economic Modelling, Elsevier, vol. 81(C), pages 49-58.
- Zhao, Weigang & Cao, Yunfei & Miao, Bo & Wang, Ke & Wei, Yi-Ming, 2018. "Impacts of shifting China's final energy consumption to electricity on CO2 emission reduction," Energy Economics, Elsevier, vol. 71(C), pages 359-369.
- Ye, Li & Yang, Deling & Dang, Yaoguo & Wang, Junjie, 2022. "An enhanced multivariable dynamic time-delay discrete grey forecasting model for predicting China's carbon emissions," Energy, Elsevier, vol. 249(C).
- Quande Qin & Huangda He & Li Li & Ling-Yun He, 2020. "A Novel Decomposition-Ensemble Based Carbon Price Forecasting Model Integrated with Local Polynomial Prediction," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1249-1273, April.
- Xie Haibin & Zhou Mo & Hu Yi & Yu Mei, 2014. "Forecasting the Crude Oil Price with Extreme Values," Journal of Systems Science and Information, De Gruyter, vol. 2(3), pages 193-205, June.
- Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
- Ai Han & Yanan He & Yongmiao Hong & Shouyang Wang, 2013. "Forecasting Interval-valued Crude Oil Prices via Autoregressive Conditional Interval Models," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
- Baruník, Jozef & Malinská, Barbora, 2016.
"Forecasting the term structure of crude oil futures prices with neural networks,"
Applied Energy, Elsevier, vol. 164(C), pages 366-379.
- Jozef Barunik & Barbora Malinska, 2015. "Forecasting the term structure of crude oil futures prices with neural networks," Papers 1504.04819, arXiv.org.
- Jozef Barunik & Barbora Malinska, 2015. "Forecasting the Term Structure of Crude Oil Futures Prices with Neural Networks," Working Papers IES 2015/25, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Nov 2015.
- Drachal, Krzysztof, 2016. "Forecasting spot oil price in a dynamic model averaging framework — Have the determinants changed over time?," Energy Economics, Elsevier, vol. 60(C), pages 35-46.
- Mohammadi, Hassan & Su, Lixian, 2010. "International evidence on crude oil price dynamics: Applications of ARIMA-GARCH models," Energy Economics, Elsevier, vol. 32(5), pages 1001-1008, September.
- Wang, Minggang & Zhao, Longfeng & Du, Ruijin & Wang, Chao & Chen, Lin & Tian, Lixin & Eugene Stanley, H., 2018. "A novel hybrid method of forecasting crude oil prices using complex network science and artificial intelligence algorithms," Applied Energy, Elsevier, vol. 220(C), pages 480-495.
More about this item
Keywords
Grey model; Time-delay effect; Grey systems; Monte Carlo simulation; CO2 emissions;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:126:y:2023:i:c:s014098832300511x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.