IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i19p8580-d1491443.html
   My bibliography  Save this article

Experimental Comparison of Two Main Paradigms for Day-Ahead Average Carbon Intensity Forecasting in Power Grids: A Case Study in Australia

Author

Listed:
  • Bowen Zhang

    (Data Science Institute, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW 2007, Australia)

  • Hongda Tian

    (Data Science Institute, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW 2007, Australia)

  • Adam Berry

    (Data Science Institute, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW 2007, Australia)

  • Hao Huang

    (Buildings Alive Pty Ltd., Sydney, NSW 2000, Australia)

  • A. Craig Roussac

    (Buildings Alive Pty Ltd., Sydney, NSW 2000, Australia)

Abstract

Accurate carbon intensity forecasts enable consumers to adjust their electricity use, reducing it during high fossil-fuel generation and increasing it when renewables dominate. Existing methods for carbon intensity forecasting can be categorized into a source-disaggregated approach (SDA), focused on delivering individual generation forecasts for each potential source (e.g., wind, brown-coal, etc.), and a source-aggregated approach (SAA), attempting to produce a single carbon intensity forecast for the entire system. This research aims to conduct a thorough comparison between SDA and SAA for carbon intensity forecasting, investigating the factors that contribute to variations in performance across two distinct real-world generation scenarios. By employing contemporary machine learning time-series forecasting models, and analyzing data from representative locations with varying fuel mixes and renewable penetration levels, this study provides insights into the key factors that differentiate the performance of each approach in a real-world setting. The results indicate the SAA proves to be more advantageous in scenarios involving increased renewable energy generation, with greater proportions and instances when renewable energy generation faces curtailment or atypical/peaking generation is brought online. While the SDA offers better model interpretability and outperforms in scenarios with increased niche energy generation types, in our experiments, it struggles to produce accurate forecasts when renewable outputs approach zero.

Suggested Citation

  • Bowen Zhang & Hongda Tian & Adam Berry & Hao Huang & A. Craig Roussac, 2024. "Experimental Comparison of Two Main Paradigms for Day-Ahead Average Carbon Intensity Forecasting in Power Grids: A Case Study in Australia," Sustainability, MDPI, vol. 16(19), pages 1-20, October.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:19:p:8580-:d:1491443
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/19/8580/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/19/8580/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bokde, Neeraj Dhanraj & Tranberg, Bo & Andresen, Gorm Bruun, 2021. "Short-term CO2 emissions forecasting based on decomposition approaches and its impact on electricity market scheduling," Applied Energy, Elsevier, vol. 281(C).
    2. Gu, Haolei & Wu, Lifeng, 2024. "Pulse fractional grey model application in forecasting global carbon emission," Applied Energy, Elsevier, vol. 358(C).
    3. Yuan, Hong & Ma, Xin & Ma, Minda & Ma, Juan, 2024. "Hybrid framework combining grey system model with Gaussian process and STL for CO2 emissions forecasting in developed countries," Applied Energy, Elsevier, vol. 360(C).
    4. Zhonghua Han & Bingwei Cui & Liwen Xu & Jianwen Wang & Zhengquan Guo, 2023. "Coupling LSTM and CNN Neural Networks for Accurate Carbon Emission Prediction in 30 Chinese Provinces," Sustainability, MDPI, vol. 15(18), pages 1-26, September.
    5. Leerbeck, Kenneth & Bacher, Peder & Junker, Rune Grønborg & Goranović, Goran & Corradi, Olivier & Ebrahimy, Razgar & Tveit, Anna & Madsen, Henrik, 2020. "Short-term forecasting of CO2 emission intensity in power grids by machine learning," Applied Energy, Elsevier, vol. 277(C).
    6. Mason, Karl & Duggan, Jim & Howley, Enda, 2018. "Forecasting energy demand, wind generation and carbon dioxide emissions in Ireland using evolutionary neural networks," Energy, Elsevier, vol. 155(C), pages 705-720.
    7. Hawkes, A.D., 2010. "Estimating marginal CO2 emissions rates for national electricity systems," Energy Policy, Elsevier, vol. 38(10), pages 5977-5987, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Chao & Wang, Tao & Chen, Xiaohong & Shao, Quanxi & Zhang, Xianqi, 2023. "Ensemble framework for daily carbon dioxide emissions forecasting based on the signal decomposition–reconstruction model," Applied Energy, Elsevier, vol. 345(C).
    2. Hamels, Sam & Himpe, Eline & Laverge, Jelle & Delghust, Marc & Van den Brande, Kjartan & Janssens, Arnold & Albrecht, Johan, 2021. "The use of primary energy factors and CO2 intensities for electricity in the European context - A systematic methodological review and critical evaluation of the contemporary literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    3. Rüdisüli, Martin & Romano, Elliot & Eggimann, Sven & Patel, Martin K., 2022. "Decarbonization strategies for Switzerland considering embedded greenhouse gas emissions in electricity imports," Energy Policy, Elsevier, vol. 162(C).
    4. Shi, Changfeng & Zhi, Jiaqi & Yao, Xiao & Zhang, Hong & Yu, Yue & Zeng, Qingshun & Li, Luji & Zhang, Yuxi, 2023. "How can China achieve the 2030 carbon peak goal—a crossover analysis based on low-carbon economics and deep learning," Energy, Elsevier, vol. 269(C).
    5. James, Nick & Menzies, Max, 2022. "Global and regional changes in carbon dioxide emissions: 1970–2019," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    6. Onat, Nuri Cihat & Kucukvar, Murat & Tatari, Omer, 2015. "Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States," Applied Energy, Elsevier, vol. 150(C), pages 36-49.
    7. Ye, Li & Yang, Deling & Dang, Yaoguo & Wang, Junjie, 2022. "An enhanced multivariable dynamic time-delay discrete grey forecasting model for predicting China's carbon emissions," Energy, Elsevier, vol. 249(C).
    8. Junda Chen & Xuejing Lan & Ye Zhou & Jiaqiao Liang, 2022. "Formation Control with Connectivity Assurance for Missile Swarms by a Natural Co-Evolutionary Strategy," Mathematics, MDPI, vol. 10(22), pages 1-24, November.
    9. Lu, Hongfang & Ma, Xin & Ma, Minda, 2021. "A hybrid multi-objective optimizer-based model for daily electricity demand prediction considering COVID-19," Energy, Elsevier, vol. 219(C).
    10. Filippo Beltrami & Fulvio Fontini & Monica Giulietti & Luigi Grossi, 2022. "The Zonal and Seasonal CO2 Marginal Emissions Factors for the Italian Power Market," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(2), pages 381-411, October.
    11. Can Ding & Yiyuan Zhou & Qingchang Ding & Kaiming Li, 2022. "Integrated Carbon-Capture-Based Low-Carbon Economic Dispatch of Power Systems Based on EEMD-LSTM-SVR Wind Power Forecasting," Energies, MDPI, vol. 15(5), pages 1-27, February.
    12. Negri, Simone & Giani, Federico & Blasuttigh, Nicola & Massi Pavan, Alessandro & Mellit, Adel & Tironi, Enrico, 2022. "Combined model predictive control and ANN-based forecasters for jointly acting renewable self-consumers: An environmental and economical evaluation," Renewable Energy, Elsevier, vol. 198(C), pages 440-454.
    13. Ewa Chodakowska & Joanicjusz Nazarko & Łukasz Nazarko, 2021. "ARIMA Models in Electrical Load Forecasting and Their Robustness to Noise," Energies, MDPI, vol. 14(23), pages 1-22, November.
    14. Howard, B. & Waite, M. & Modi, V., 2017. "Current and near-term GHG emissions factors from electricity production for New York State and New York City," Applied Energy, Elsevier, vol. 187(C), pages 255-271.
    15. Bokde, Neeraj Dhanraj & Tranberg, Bo & Andresen, Gorm Bruun, 2021. "Short-term CO2 emissions forecasting based on decomposition approaches and its impact on electricity market scheduling," Applied Energy, Elsevier, vol. 281(C).
    16. Capuder, Tomislav & Mancarella, Pierluigi, 2014. "Techno-economic and environmental modelling and optimization of flexible distributed multi-generation options," Energy, Elsevier, vol. 71(C), pages 516-533.
    17. Yaren Aydın & Celal Cakiroglu & Gebrail Bekdaş & Ümit Işıkdağ & Sanghun Kim & Junhee Hong & Zong Woo Geem, 2023. "Neural Network Predictive Models for Alkali-Activated Concrete Carbon Emission Using Metaheuristic Optimization Algorithms," Sustainability, MDPI, vol. 16(1), pages 1-19, December.
    18. Radwa Salem & Ali Bahadori-Jahromi & Anastasia Mylona & Paulina Godfrey & Darren Cook, 2018. "Comparison and Evaluation of the Potential Energy, Carbon Emissions, and Financial Impacts from the Incorporation of CHP and CCHP Systems in Existing UK Hotel Buildings," Energies, MDPI, vol. 11(5), pages 1-15, May.
    19. Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
    20. Gilbraith, Nathaniel & Powers, Susan E., 2013. "Residential demand response reduces air pollutant emissions on peak electricity demand days in New York City," Energy Policy, Elsevier, vol. 59(C), pages 459-469.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:19:p:8580-:d:1491443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.