IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v198y2024ics0040162523006704.html
   My bibliography  Save this article

The knowledge linkage between science and technology influences corporate technological innovation: Evidence from scientific publications and patents

Author

Listed:
  • Chen, Xi
  • Mao, Jin
  • Ma, Yaxue
  • Li, Gang

Abstract

Scientific knowledge has been shown to be a key contributor to corporate technological innovation; hence, modern inventive firms place a strong emphasis on scientific research. However, little is known about how the knowledge linkage between science and technology (ST linkage) of corporations fosters their technological innovation. In an effort to fill this vacuum in the literature, we investigate how multiple properties of ST linkage influence corporate technological innovation. We conducted a Zero-inflated Negative Binomial regression using scientific publications, patents, and firm-level data from 671 pharmaceutical and 686 semiconductor corporations to test our hypotheses. We find that the higher the proportion of corporations citing their published scientific publications in patents, the more likely they are to produce more patents, and corporate technological innovation benefits from the utilization of scientific knowledge produced in the early stages. Furthermore, the positive effects of the aforementioned factors on the technological innovation performance of corporations are present in both scientific research strategies (e.g., independent vs. joint research). These findings contribute to the understanding of the underlying mechanism of corporate basic research facilitating technological innovation. This study also provides meaningful advice regarding how corporations can enhance their technological innovation through scientific research.

Suggested Citation

  • Chen, Xi & Mao, Jin & Ma, Yaxue & Li, Gang, 2024. "The knowledge linkage between science and technology influences corporate technological innovation: Evidence from scientific publications and patents," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
  • Handle: RePEc:eee:tefoso:v:198:y:2024:i:c:s0040162523006704
    DOI: 10.1016/j.techfore.2023.122985
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162523006704
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2023.122985?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bastian Krieger & Maikel Pellens & Knut Blind & Sonia Gruber & Torben Schubert, 2021. "Are firms withdrawing from basic research? An analysis of firm-level publication behaviour in Germany," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9677-9698, December.
    2. S Sudhindra & L S Ganesh & Arshinder Kaur, 2020. "Strategic parameters of knowledge sharing in supply chains," Knowledge Management Research & Practice, Taylor & Francis Journals, vol. 18(3), pages 310-322, July.
    3. Kim, Jeeeun & Lee, Sungjoo, 2015. "Patent databases for innovation studies: A comparative analysis of USPTO, EPO, JPO and KIPO," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 332-345.
    4. Kenneth Zahringer & Christos Kolympiris & Nicholas Kalaitzandonakes, 2017. "Academic knowledge quality differentials and the quality of firm innovation," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 26(5), pages 821-844.
    5. Ke, Qing, 2018. "Comparing scientific and technological impact of biomedical research," Journal of Informetrics, Elsevier, vol. 12(3), pages 706-717.
    6. Narin, Francis & Olivastro, Dominic, 1992. "Status report: Linkage between technology and science," Research Policy, Elsevier, vol. 21(3), pages 237-249, June.
    7. Philippe Aghion & John Van Reenen & Luigi Zingales, 2013. "Innovation and Institutional Ownership," American Economic Review, American Economic Association, vol. 103(1), pages 277-304, February.
    8. Aldieri, Luigi & Makkonen, Teemu & Vinci, Concetto Paolo, 2022. "Do research and development and environmental knowledge spillovers facilitate meeting sustainable development goals for resource efficiency?," Resources Policy, Elsevier, vol. 76(C).
    9. Ke, Qing, 2020. "An analysis of the evolution of science-technology linkage in biomedicine," Journal of Informetrics, Elsevier, vol. 14(4).
    10. Lim, Kwanghui, 2004. "The relationship between research and innovation in the semiconductor and pharmaceutical industries (1981-1997)," Research Policy, Elsevier, vol. 33(2), pages 287-321, March.
    11. Matt Marx & Aaron Fuegi, 2020. "Reliance on science: Worldwide front‐page patent citations to scientific articles," Strategic Management Journal, Wiley Blackwell, vol. 41(9), pages 1572-1594, September.
    12. Paula Stephan & Reinhilde Veugelers & Jian Wang, 2017. "Reviewers are blinkered by bibliometrics," Nature, Nature, vol. 544(7651), pages 411-412, April.
    13. Jong, Simcha & Slavova, Kremena, 2014. "When publications lead to products: The open science conundrum in new product development," Research Policy, Elsevier, vol. 43(4), pages 645-654.
    14. Leung, T.Y. & Sharma, Piyush, 2021. "Differences in the impact of R&D intensity and R&D internationalization on firm performance – Mediating role of innovation performance," Journal of Business Research, Elsevier, vol. 131(C), pages 81-91.
    15. Markus Simeth & Michele Cincera, 2016. "Corporate Science, Innovation, and Firm Value," Management Science, INFORMS, vol. 62(7), pages 1970-1981, July.
    16. Simeth, Markus & Raffo, Julio D., 2013. "What makes companies pursue an Open Science strategy?," Research Policy, Elsevier, vol. 42(9), pages 1531-1543.
    17. Veugelers, Reinhilde & Wang, Jian, 2019. "Scientific novelty and technological impact," Research Policy, Elsevier, vol. 48(6), pages 1362-1372.
    18. Manuel Trajtenberg & Rebecca Henderson & Adam Jaffe, 1997. "University Versus Corporate Patents: A Window On The Basicness Of Invention," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 5(1), pages 19-50.
    19. Hötte, Kerstin & Pichler, Anton & Lafond, François, 2021. "The rise of science in low-carbon energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    20. Henry Sauermann & Paula Stephan, 2013. "Conflicting Logics? A Multidimensional View of Industrial and Academic Science," Organization Science, INFORMS, vol. 24(3), pages 889-909, June.
    21. Qing Ke, 2023. "Interdisciplinary research and technological impact: evidence from biomedicine," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(4), pages 2035-2077, April.
    22. Arthur, W. Brian, 2007. "The structure of invention," Research Policy, Elsevier, vol. 36(2), pages 274-287, March.
    23. Colombelli, Alessandra & Krafft, Jackie & Quatraro, Francesco, 2013. "Properties of knowledge base and firm survival: Evidence from a sample of French manufacturing firms," Technological Forecasting and Social Change, Elsevier, vol. 80(8), pages 1469-1483.
    24. Nathan ROSENBERG, 2009. "Why do firms do basic research (with their own money)?," World Scientific Book Chapters, in: Nathan Rosenberg (ed.), Studies On Science And The Innovation Process Selected Works of Nathan Rosenberg, chapter 11, pages 225-234, World Scientific Publishing Co. Pte. Ltd..
    25. Hervas-Oliver, Jose-Luis & Sempere-Ripoll, Francisca & Boronat-Moll, Carles, 2021. "Technological innovation typologies and open innovation in SMEs: Beyond internal and external sources of knowledge," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    26. Rosa Caiazza & Aileen Richardson & David Audretsch, 2015. "Knowledge effects on competitiveness: from firms to regional advantage," The Journal of Technology Transfer, Springer, vol. 40(6), pages 899-909, December.
    27. Gonzalez, Rodrigo Valio Dominguez & de Melo, Tatiana Massaroli, 2018. "The effects of organization context on knowledge exploration and exploitation," Journal of Business Research, Elsevier, vol. 90(C), pages 215-225.
    28. Lili Wang & Zexia Li, 2021. "Knowledge flows from public science to industrial technologies," The Journal of Technology Transfer, Springer, vol. 46(4), pages 1232-1255, August.
    29. Tan, Youchao & Liu, Xiumei & Sun, Hanwen & Zeng, Cheng(Colin), 2022. "Population ageing, labour market rigidity and corporate innovation: Evidence from China," Research Policy, Elsevier, vol. 51(2).
    30. Michaël Bikard & Matt Marx, 2020. "Bridging Academia and Industry: How Geographic Hubs Connect University Science and Corporate Technology," Management Science, INFORMS, vol. 66(8), pages 3425-3443, August.
    31. Kenneth Arrow, 1962. "Economic Welfare and the Allocation of Resources for Invention," NBER Chapters, in: The Rate and Direction of Inventive Activity: Economic and Social Factors, pages 609-626, National Bureau of Economic Research, Inc.
    32. Ke, Qing, 2020. "Technological impact of biomedical research: The role of basicness and novelty," Research Policy, Elsevier, vol. 49(7).
    33. Oliver, Amalya L., 2004. "Biotechnology entrepreneurial scientists and their collaborations," Research Policy, Elsevier, vol. 33(4), pages 583-597, May.
    34. Ashish Arora & Sharon Belenzon & Lia Sheer, 2021. "Knowledge Spillovers and Corporate Investment in Scientific Research," American Economic Review, American Economic Association, vol. 111(3), pages 871-898, March.
    35. Slavova, Kremena & Jong, Simcha, 2021. "University alliances and firm exploratory innovation: Evidence from therapeutic product development," Technovation, Elsevier, vol. 107(C).
    36. repec:wip:wpaper:6 is not listed on IDEAS
    37. Hall, Bronwyn H & Ziedonis, Rosemarie Ham, 2001. "The Patent Paradox Revisited: An Empirical Study of Patenting in the U.S. Semiconductor Industry, 1979-1995," RAND Journal of Economics, The RAND Corporation, vol. 32(1), pages 101-128, Spring.
    38. Colombo, Massimo G. & Foss, Nicolai J. & Lyngsie, Jacob & Rossi Lamastra, Cristina, 2021. "What drives the delegation of innovation decisions? The roles of firm innovation strategy and the nature of external knowledge," Research Policy, Elsevier, vol. 50(1).
    39. Ardito, Lorenzo & Petruzzelli, Antonio Messeni & Ghisetti, Claudia, 2019. "The impact of public research on the technological development of industry in the green energy field," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 25-35.
    40. Simeth, Markus & Lhuillery, Stephane, 2015. "How do firms develop capabilities for scientific disclosure?," Research Policy, Elsevier, vol. 44(7), pages 1283-1295.
    41. Caloghirou, Yannis & Giotopoulos, Ioannis & Kontolaimou, Alexandra & Korra, Efthymia & Tsakanikas, Aggelos, 2021. "Industry-university knowledge flows and product innovation: How do knowledge stocks and crisis matter?," Research Policy, Elsevier, vol. 50(3).
    42. Rosenberg, Nathan & Nelson, Richard R., 1994. "American universities and technical advance in industry," Research Policy, Elsevier, vol. 23(3), pages 323-348, May.
    43. Perkmann, Markus & Tartari, Valentina & McKelvey, Maureen & Autio, Erkko & Broström, Anders & D’Este, Pablo & Fini, Riccardo & Geuna, Aldo & Grimaldi, Rosa & Hughes, Alan & Krabel, Stefan & Kitson, Mi, 2013. "Academic engagement and commercialisation: A review of the literature on university–industry relations," Research Policy, Elsevier, vol. 42(2), pages 423-442.
    44. Walsh, John P. & Lee, You-Na & Nagaoka, Sadao, 2016. "Openness and innovation in the US: Collaboration form, idea generation and implementation," Research Policy, Elsevier, vol. 45(8), pages 1660-1671.
    45. Lee Fleming & Olav Sorenson, 2004. "Science as a map in technological search," Strategic Management Journal, Wiley Blackwell, vol. 25(8‐9), pages 909-928, August.
    46. Choi, Jin-Uk & Lee, Chang-Yang, 2022. "The differential effects of basic research on firm R&D productivity: The conditioning role of technological diversification," Technovation, Elsevier, vol. 118(C).
    47. William H. Greene, 1994. "Accounting for Excess Zeros and Sample Selection in Poisson and Negative Binomial Regression Models," Working Papers 94-10, New York University, Leonard N. Stern School of Business, Department of Economics.
    48. Michelle Gittelman & Bruce Kogut, 2003. "Does Good Science Lead to Valuable Knowledge? Biotechnology Firms and the Evolutionary Logic of Citation Patterns," Management Science, INFORMS, vol. 49(4), pages 366-382, April.
    49. Matt Marx & Aaron Fuegi, 2020. "Reliance on Science by Inventors: Hybrid Extraction of In-text Patent-to-Article Citations," NBER Working Papers 27987, National Bureau of Economic Research, Inc.
    50. Ba, Zhichao & Liang, Zhentao, 2021. "A novel approach to measuring science-technology linkage: From the perspective of knowledge network coupling," Journal of Informetrics, Elsevier, vol. 15(3).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yingying & Feng, Nianqiao & Wang, Xinpeng, 2024. "Can the green finance pilot policy promote the low-carbon transformation of the economy?," International Review of Economics & Finance, Elsevier, vol. 93(PA), pages 1074-1086.
    2. Zhang, Aili & Zhu, Han & Sun, Xinyu, 2024. "Manufacturing intelligentization and technological innovation: Perspectives on intra-industry impacts and inter-industry technology spillovers," Technological Forecasting and Social Change, Elsevier, vol. 204(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Fang, 2024. "Does the recombination of distant scientific knowledge generate valuable inventions? An analysis of pharmaceutical patents," Technovation, Elsevier, vol. 130(C).
    2. Rotolo, Daniele & Camerani, Roberto & Grassano, Nicola & Martin, Ben R., 2022. "Why do firms publish? A systematic literature review and a conceptual framework," Research Policy, Elsevier, vol. 51(10).
    3. Martínez, Catalina & Parlane, Sarah, 2023. "Academic scientists in corporate R&D: A theoretical model," Research Policy, Elsevier, vol. 52(5).
    4. Roberto Camerani & Daniele Rotolo & Nicola Grassano, 2018. "Do Firms Publish? A Multi-Sectoral Analysis," SPRU Working Paper Series 2018-21, SPRU - Science Policy Research Unit, University of Sussex Business School.
    5. Hsu, David H. & Hsu, Po-Hsuan & Zhao, Qifeng, 2021. "Rich on paper? Chinese firms’ academic publications, patents, and market value," Research Policy, Elsevier, vol. 50(9).
    6. Sheer, Lia, 2022. "Sitting on the Fence: Integrating the two worlds of scientific discovery and invention within the firm," Research Policy, Elsevier, vol. 51(7).
    7. Ju, Xiaosheng & Jiang, Shengjun & Zhao, Qifeng, 2023. "Innovation effects of academic executives: Evidence from China," Research Policy, Elsevier, vol. 52(3).
    8. Pellens, Maikel & Della Malva, Antonio, 2016. "Changing of the guard: Structural change and corporate science in the semiconductor industry," ZEW Discussion Papers 16-050, ZEW - Leibniz Centre for European Economic Research.
    9. Gans, Joshua S. & Murray, Fiona E. & Stern, Scott, 2017. "Contracting over the disclosure of scientific knowledge: Intellectual property and academic publication," Research Policy, Elsevier, vol. 46(4), pages 820-835.
    10. Choi, Jin-Uk & Lee, Chang-Yang, 2022. "The differential effects of basic research on firm R&D productivity: The conditioning role of technological diversification," Technovation, Elsevier, vol. 118(C).
    11. Simeth, Markus & Raffo, Julio D., 2013. "What makes companies pursue an Open Science strategy?," Research Policy, Elsevier, vol. 42(9), pages 1531-1543.
    12. Simeth, Markus & Lhuillery, Stephane, 2015. "How do firms develop capabilities for scientific disclosure?," Research Policy, Elsevier, vol. 44(7), pages 1283-1295.
    13. Soh, Pek-Hooi & Subramanian, Annapoornima M., 2014. "When do firms benefit from university–industry R&D collaborations? The implications of firm R&D focus on scientific research and technological recombination," Journal of Business Venturing, Elsevier, vol. 29(6), pages 807-821.
    14. Michaël Bikard, 2018. "Made in Academia: The Effect of Institutional Origin on Inventors’ Attention to Science," Organization Science, INFORMS, vol. 29(5), pages 818-836, October.
    15. Plantec, Quentin & Cabanes, Benjamin & le Masson, Pascal & Weil, Benoit, 2023. "Early-career academic engagement in university–industry collaborative PhDs: Research orientation and project performance," Research Policy, Elsevier, vol. 52(9).
    16. Beck, Mathias & Junge, Martin & Kaiser, Ulrich, 2017. "Public Funding and Corporate Innovation," IZA Discussion Papers 11196, Institute of Labor Economics (IZA).
    17. Ke, Qing, 2020. "Technological impact of biomedical research: The role of basicness and novelty," Research Policy, Elsevier, vol. 49(7).
    18. Blind, Knut & Krieger, Bastian & Pellens, Maikel, 2022. "The interplay between product innovation, publishing, patenting and developing standards," Research Policy, Elsevier, vol. 51(7).
    19. Markus Simeth & Michele Cincera, 2016. "Corporate Science, Innovation, and Firm Value," Management Science, INFORMS, vol. 62(7), pages 1970-1981, July.
    20. Kenneth Zahringer & Christos Kolympiris & Nicholas Kalaitzandonakes, 2017. "Academic knowledge quality differentials and the quality of firm innovation," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 26(5), pages 821-844.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:198:y:2024:i:c:s0040162523006704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.