IDEAS home Printed from https://ideas.repec.org/a/eee/respol/v33y2004i2p287-321.html
   My bibliography  Save this article

The relationship between research and innovation in the semiconductor and pharmaceutical industries (1981-1997)

Author

Listed:
  • Lim, Kwanghui

Abstract

No abstract is available for this item.

Suggested Citation

  • Lim, Kwanghui, 2004. "The relationship between research and innovation in the semiconductor and pharmaceutical industries (1981-1997)," Research Policy, Elsevier, vol. 33(2), pages 287-321, March.
  • Handle: RePEc:eee:respol:v:33:y:2004:i:2:p:287-321
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0048-7333(03)00128-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rebecca Henderson & Iain Cockburn, 1996. "Scale, Scope, and Spillovers: The Determinants of Research Productivity in Drug Discovery," RAND Journal of Economics, The RAND Corporation, vol. 27(1), pages 32-59, Spring.
    2. Iain M. Cockburn & Rebecca M. Henderson, 1998. "Absorptive Capacity, Coauthoring Behavior, and the Organization of Research in Drug Discovery," Journal of Industrial Economics, Wiley Blackwell, vol. 46(2), pages 157-182, June.
    3. Zvi Griliches, 1998. "Productivity and R&D at the Firm Level," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 100-133, National Bureau of Economic Research, Inc.
    4. Stern, S. & Trajtenberg, M., 1998. "Empirical Implications of Physician Authority in Pharmaceutical Decisionmaking," Papers 24-98, Tel Aviv.
    5. Manuel Trajtenberg, 1990. "A Penny for Your Quotes: Patent Citations and the Value of Innovations," RAND Journal of Economics, The RAND Corporation, vol. 21(1), pages 172-187, Spring.
    6. Jaffe, Adam B, 1986. "Technological Opportunity and Spillovers of R&D: Evidence from Firms' Patents, Profits, and Market Value," American Economic Review, American Economic Association, vol. 76(5), pages 984-1001, December.
    7. Zvi Griliches, 1984. "R&D, Patents, and Productivity," NBER Books, National Bureau of Economic Research, Inc, number gril84-1.
    8. Ikujiro Nonaka, 1994. "A Dynamic Theory of Organizational Knowledge Creation," Organization Science, INFORMS, vol. 5(1), pages 14-37, February.
    9. Zvi Griliches, 1998. "Productivity, R&D, and Basic Research at the Firm Level in the 1970s," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 82-99, National Bureau of Economic Research, Inc.
    10. Zvi Griliches, 1998. "Returns to Research and Development Expenditures in the Private Sector," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 49-81, National Bureau of Economic Research, Inc.
    11. Hall, Bronwyn H. & Jaffee, Adam & Trajtenberg, Manuel, 2000. "Market Value and Patent Citations: A First Look," Department of Economics, Working Paper Series qt1rh8k6z2, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
    12. repec:fth:harver:1473 is not listed on IDEAS
    13. Kenneth Arrow, 1962. "Economic Welfare and the Allocation of Resources for Invention," NBER Chapters, in: The Rate and Direction of Inventive Activity: Economic and Social Factors, pages 609-626, National Bureau of Economic Research, Inc.
    14. Hicks, Diana M. & Isard, Phoebe A. & Martin, Ben R., 1996. "A morphology of Japanese and European corporate research networks," Research Policy, Elsevier, vol. 25(3), pages 359-378, May.
    15. Zvi Griliches, 1998. "Patent Statistics as Economic Indicators: A Survey," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 287-343, National Bureau of Economic Research, Inc.
    16. Lynne G. Zucker & Michael R. Darby, 1995. "Virtuous Circles of Productivity: Star Bioscientists and the Institutional Transformation of Industry," NBER Working Papers 5342, National Bureau of Economic Research, Inc.
    17. Gambardella, Alfonso, 1992. "Competitive advantages from in-house scientific research: The US pharmaceutical industry in the 1980s," Research Policy, Elsevier, vol. 21(5), pages 391-407, October.
    18. Stephan, Paula E., 2010. "The Economics of Science," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 217-273, Elsevier.
    19. Romer, Paul M, 1990. "Endogenous Technological Change," Journal of Political Economy, University of Chicago Press, vol. 98(5), pages 71-102, October.
    20. Basberg, Bjorn L., 1982. "Technological change in the Norwegian whaling industry : A case-study in the use of patent-statistics as a technology indicator," Research Policy, Elsevier, vol. 11(3), pages 163-171, June.
    21. repec:bla:jindec:v:46:y:1998:i:2:p:157-82 is not listed on IDEAS
    22. Fleming, Lee & Sorenson, Olav, 2001. "Technology as a complex adaptive system: evidence from patent data," Research Policy, Elsevier, vol. 30(7), pages 1019-1039, August.
    23. Pierre Mohnen, 1994. "The Econometric Approach to R&D Externalities," Cahiers de recherche du Département des sciences économiques, UQAM 9408, Université du Québec à Montréal, Département des sciences économiques.
    24. Ellison, Glenn & Glaeser, Edward L, 1997. "Geographic Concentration in U.S. Manufacturing Industries: A Dartboard Approach," Journal of Political Economy, University of Chicago Press, vol. 105(5), pages 889-927, October.
    25. Curry, B & George, K D, 1983. "Industrial Concentration: A Survey," Journal of Industrial Economics, Wiley Blackwell, vol. 31(3), pages 203-255, March.
    26. Richard C. Levin & Peter C. Reiss, 1988. "Cost-Reducing and Demand-Creating R&D with Spillovers," RAND Journal of Economics, The RAND Corporation, vol. 19(4), pages 538-556, Winter.
    27. Hausman, Jerry & Hall, Bronwyn H & Griliches, Zvi, 1984. "Econometric Models for Count Data with an Application to the Patents-R&D Relationship," Econometrica, Econometric Society, vol. 52(4), pages 909-938, July.
    28. Richard R. Nelson, 1959. "The Simple Economics of Basic Scientific Research," Journal of Political Economy, University of Chicago Press, vol. 67(3), pages 297-297.
    29. Lori Rosenkopf & Paul Almeida, 2003. "Overcoming Local Search Through Alliances and Mobility," Management Science, INFORMS, vol. 49(6), pages 751-766, June.
    30. Mansfield, Edwin & Schwartz, Mark & Wagner, Samuel, 1981. "Imitation Costs and Patents: An Empirical Study," Economic Journal, Royal Economic Society, vol. 91(364), pages 907-918, December.
    31. Mansfield, Edwin, 1981. "Composition of R and D Expenditures: Relationship to Size of Firm, Concentration, and Innovative Output," The Review of Economics and Statistics, MIT Press, vol. 63(4), pages 610-615, November.
    32. Basberg, Bjorn L., 1987. "Patents and the measurement of technological change: A survey of the literature," Research Policy, Elsevier, vol. 16(2-4), pages 131-141, August.
    33. Ariel Pakes & Zvi Griliches, 1984. "Patents and R&D at the Firm Level: A First Look," NBER Chapters, in: R&D, Patents, and Productivity, pages 55-72, National Bureau of Economic Research, Inc.
    34. Mowery, David C., 1983. "Innovation, market structure, and government policy in the American semiconductor electronics industry: A survey," Research Policy, Elsevier, vol. 12(4), pages 183-197, August.
    35. Cohen, Wesley M & Levinthal, Daniel A, 1989. "Innovation and Learning: The Two Faces of R&D," Economic Journal, Royal Economic Society, vol. 99(397), pages 569-596, September.
    36. Comanor, William S & Scherer, Frederic M, 1969. "Patent Statistics as a Measure of Technical Change," Journal of Political Economy, University of Chicago Press, vol. 77(3), pages 392-398, May/June.
    37. Ernst, Holger, 1998. "Industrial research as a source of important patents," Research Policy, Elsevier, vol. 27(1), pages 1-15, May.
    38. Dietmar Harhoff & Francis Narin & F. M. Scherer & Katrin Vopel, 1999. "Citation Frequency And The Value Of Patented Inventions," The Review of Economics and Statistics, MIT Press, vol. 81(3), pages 511-515, August.
    39. Flaherty, M Therese, 1984. "Field Research on the Link between Technological Innovation and Growth: Evidence from the International Semiconductor Industry," American Economic Review, American Economic Association, vol. 74(2), pages 67-72, May.
    40. Arora, Ashish & Gambardella, Alfonso, 1994. "Evaluating technological information and utilizing it : Scientific knowledge, technological capability, and external linkages in biotechnology," Journal of Economic Behavior & Organization, Elsevier, vol. 24(1), pages 91-114, June.
    41. Nathan ROSENBERG, 2009. "Why do firms do basic research (with their own money)?," World Scientific Book Chapters, in: Nathan Rosenberg (ed.), Studies On Science And The Innovation Process Selected Works of Nathan Rosenberg, chapter 11, pages 225-234, World Scientific Publishing Co. Pte. Ltd..
    42. Adams, James D, 1990. "Fundamental Stocks of Knowledge and Productivity Growth," Journal of Political Economy, University of Chicago Press, vol. 98(4), pages 673-702, August.
    43. Michelle Gittelman & Bruce Kogut, 2003. "Does Good Science Lead to Valuable Knowledge? Biotechnology Firms and the Evolutionary Logic of Citation Patterns," Management Science, INFORMS, vol. 49(4), pages 366-382, April.
    44. Richard C. Levin & Alvin K. Klevorick & Richard R. Nelson & Sidney G. Winter, 1987. "Appropriating the Returns from Industrial Research and Development," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 18(3, Specia), pages 783-832.
    45. Narin, Francis & Noma, Elliot & Perry, Ross, 1987. "Patents as indicators of corporate technological strength," Research Policy, Elsevier, vol. 16(2-4), pages 143-155, August.
    46. Suzanne Scotchmer, 1991. "Standing on the Shoulders of Giants: Cumulative Research and the Patent Law," Journal of Economic Perspectives, American Economic Association, vol. 5(1), pages 29-41, Winter.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cohen, Wesley M., 2010. "Fifty Years of Empirical Studies of Innovative Activity and Performance," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 129-213, Elsevier.
    2. Choi, Jin-Uk & Lee, Chang-Yang, 2022. "The differential effects of basic research on firm R&D productivity: The conditioning role of technological diversification," Technovation, Elsevier, vol. 118(C).
    3. Choi, Mincheol & Lee, Chang-Yang, 2021. "Technological diversification and R&D productivity: The moderating effects of knowledge spillovers and core-technology competence," Technovation, Elsevier, vol. 104(C).
    4. Leten, Bart & Kelchtermans, Stijn & Belderbos, Ren, 2010. "Internal Basic Research, External Basic Research and the Technological Performance of Pharmaceutical Firms," Working Papers 2010/12, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
    5. Hagedoorn, John & Cloodt, Myriam, 2003. "Measuring innovative performance: is there an advantage in using multiple indicators?," Research Policy, Elsevier, vol. 32(8), pages 1365-1379, September.
    6. Toole, Andrew A. & King, John L., 2011. "Industry-science connections in agriculture: Do public science collaborations and knowledge flows contribute to firm-level agricultural research productivity?," ZEW Discussion Papers 11-064, ZEW - Leibniz Centre for European Economic Research.
    7. Veugelers, Reinhilde & Cassiman, Bruno & Arts, Sam, 2012. "Mind the gap: capturing value from basic research: boundary crossing inventors and partnerships," CEPR Discussion Papers 9215, C.E.P.R. Discussion Papers.
    8. Levin, Mark (Левин, Марк) & Matrosova, K. (Матросова, К.), 2016. "Research, Modeling and Process Management Dissemination of Innovations in Socio-Economic Systems [Исследование, Моделирование И Управление Процессами Распространения Инноваций В Социально-Экономиче," Working Papers 1443, Russian Presidential Academy of National Economy and Public Administration.
    9. Leten, Bart & Landoni, Paolo & Van Looy, Bart, 2014. "Science or graduates: How do firms benefit from the proximity of universities?," Research Policy, Elsevier, vol. 43(8), pages 1398-1412.
    10. Francisco Polidoro & Matt Theeke, 2012. "Getting Competition Down to a Science: The Effects of Technological Competition on Firms' Scientific Publications," Organization Science, INFORMS, vol. 23(4), pages 1135-1153, August.
    11. René Belderbos & Leo Sleuwaegen & Reinhilde Veugelers, 2010. "Market Integration and Technological Leadership in Europe," European Economy - Economic Papers 2008 - 2015 403, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    12. Rotolo, Daniele & Camerani, Roberto & Grassano, Nicola & Martin, Ben R., 2022. "Why do firms publish? A systematic literature review and a conceptual framework," Research Policy, Elsevier, vol. 51(10).
    13. Markus Simeth & Michele Cincera, 2016. "Corporate Science, Innovation, and Firm Value," Management Science, INFORMS, vol. 62(7), pages 1970-1981, July.
    14. Richard M. H. Suen, 2013. "Research Policy and U.S. Economic Growth," Working papers 2013-18, University of Connecticut, Department of Economics.
    15. Dibiaggio, Ludovic & Nasiriyar, Maryam & Nesta, Lionel, 2014. "Substitutability and complementarity of technological knowledge and the inventive performance of semiconductor companies," Research Policy, Elsevier, vol. 43(9), pages 1582-1593.
    16. Simeth, Markus & Raffo, Julio D., 2013. "What makes companies pursue an Open Science strategy?," Research Policy, Elsevier, vol. 42(9), pages 1531-1543.
    17. Gao, Wenlian & Chou, Julia, 2015. "Innovation efficiency, global diversification, and firm value," Journal of Corporate Finance, Elsevier, vol. 30(C), pages 278-298.
    18. Stefan Lachenmaier, 2005. "Identification of Available and Desirable Indicators for Patent Systems, Patenting Processes and Patent Rights Research Project for the German Patent and Trademark Office," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 25.
    19. Gino Cattani, 2005. "Preadaptation, Firm Heterogeneity, and Technological Performance: A Study on the Evolution of Fiber Optics, 1970–1995," Organization Science, INFORMS, vol. 16(6), pages 563-580, December.
    20. Wang, Fang, 2024. "Does the recombination of distant scientific knowledge generate valuable inventions? An analysis of pharmaceutical patents," Technovation, Elsevier, vol. 130(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:respol:v:33:y:2004:i:2:p:287-321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/respol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.