IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v204y2024ics0040162524002142.html
   My bibliography  Save this article

Manufacturing intelligentization and technological innovation: Perspectives on intra-industry impacts and inter-industry technology spillovers

Author

Listed:
  • Zhang, Aili
  • Zhu, Han
  • Sun, Xinyu

Abstract

This study empirically analyzes the impacts of manufacturing intelligentization on technological innovation using panel data from 29 manufacturing industries in China for the period 2012–2019. The research findings indicate that manufacturing intelligentization has significantly positive impacts on intra-industry technological innovation. Moreover, technological innovation exhibits path dependence, in which prior innovation accumulation is advantageous for current technological innovation. Furthermore, the spatial Durbin model indicates that intelligentization has both horizontal and vertical technology spillover effects on technological innovation. Specifically, the intelligentization of horizontal- and forward-linked industries has positive impacts on technological innovation in the focal industry. Additionally, technological innovation exhibits significant spatiotemporal dependence, as manifested by the negative spillover effects of prior technological achievements in other industries on current technological innovation in the focal industry.

Suggested Citation

  • Zhang, Aili & Zhu, Han & Sun, Xinyu, 2024. "Manufacturing intelligentization and technological innovation: Perspectives on intra-industry impacts and inter-industry technology spillovers," Technological Forecasting and Social Change, Elsevier, vol. 204(C).
  • Handle: RePEc:eee:tefoso:v:204:y:2024:i:c:s0040162524002142
    DOI: 10.1016/j.techfore.2024.123418
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162524002142
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2024.123418?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Jun & Chang, Huihong & Forrest, Jeffrey Yi-Lin & Yang, Baohua, 2020. "Influence of artificial intelligence on technological innovation: Evidence from the panel data of china's manufacturing sectors," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    2. Delgado, Mercedes & Porter, Michael E. & Stern, Scott, 2014. "Clusters, convergence, and economic performance," Research Policy, Elsevier, vol. 43(10), pages 1785-1799.
    3. Wang, Lei & Zhou, Yahong & Chiao, Benjamin, 2023. "Robots and firm innovation: Evidence from Chinese manufacturing," Journal of Business Research, Elsevier, vol. 162(C).
    4. Philippe Aghion & Benjamin F. Jones & Charles I. Jones, 2018. "Artificial Intelligence and Economic Growth," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 237-282, National Bureau of Economic Research, Inc.
    5. Xie, Mengmeng & Ding, Lin & Xia, Yan & Guo, Jianfeng & Pan, Jiaofeng & Wang, Huijuan, 2021. "Does artificial intelligence affect the pattern of skill demand? Evidence from Chinese manufacturing firms," Economic Modelling, Elsevier, vol. 96(C), pages 295-309.
    6. Chen, Xi & Mao, Jin & Ma, Yaxue & Li, Gang, 2024. "The knowledge linkage between science and technology influences corporate technological innovation: Evidence from scientific publications and patents," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    7. Wang, Huijuan & Ding, Lin & Guan, Rong & Xia, Yan, 2020. "Effects of advancing internet technology on Chinese employment: a spatial study of inter-industry spillovers," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    8. Daron Acemoglu & Pascual Restrepo, 2020. "Robots and Jobs: Evidence from US Labor Markets," Journal of Political Economy, University of Chicago Press, vol. 128(6), pages 2188-2244.
    9. Daron Acemoglu & Pascual Restrepo, 2018. "The Race between Man and Machine: Implications of Technology for Growth, Factor Shares, and Employment," American Economic Review, American Economic Association, vol. 108(6), pages 1488-1542, June.
    10. Carolyn Shaw Solo, 1951. "Innovation in the Capitalist Process: A Critique of the Schumpeterian Theory," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 65(3), pages 417-428.
    11. Haenlein, Michael & Kaplan, Andreas, 2021. "Artificial intelligence and robotics: Shaking up the business world and society at large," Journal of Business Research, Elsevier, vol. 124(C), pages 405-407.
    12. Zhang, Peikang & Qin, Yiming & Liang, Huailiang & Zhou, Liping, 2023. "Robotization and labour demand in post-pandemic era: Microeconomic evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 192(C).
    13. Gan, Jiawu & Liu, Lihua & Qiao, Gang & Zhang, Qin, 2023. "The role of robot adoption in green innovation: Evidence from China," Economic Modelling, Elsevier, vol. 119(C).
    14. Khan, Ali Nawaz & Jabeen, Fauzia & Mehmood, Khalid & Ali Soomro, Mohsin & Bresciani, Stefano, 2023. "Paving the way for technological innovation through adoption of artificial intelligence in conservative industries," Journal of Business Research, Elsevier, vol. 165(C).
    15. Ajay Agrawal & Joshua Gans & Avi Goldfarb, 2018. "Prediction, Judgment, and Complexity: A Theory of Decision-Making and Artificial Intelligence," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 89-110, National Bureau of Economic Research, Inc.
    16. Tsekouras, Kostas & Chatzistamoulou, Nikos & Kounetas, Kostas, 2017. "Productive performance, technology heterogeneity and hierarchies: Who to compare with whom," International Journal of Production Economics, Elsevier, vol. 193(C), pages 465-478.
    17. Chatzistamoulou, Nikos & Kounetas, Kostas & Tsekouras, Kostas, 2022. "Technological hierarchies and learning: Spillovers, complexity, relatedness, and the moderating role of absorptive capacity," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    18. Wang, Delu & Wang, Yadong & Jiang, Wuding & Shi, Xunpeng, 2023. "Has outward foreign direct investment alleviated industrial overcapacity in China? An empirical test of the upstream and downstream industrial links," Structural Change and Economic Dynamics, Elsevier, vol. 67(C), pages 250-263.
    19. Wu, Ning & Liu, ZuanKuo, 2021. "Higher education development, technological innovation and industrial structure upgrade," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    20. Jianling Jiao & Yufei Yang & Yu Bai, 2018. "The impact of inter-industry R&D technology spillover on carbon emission in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 913-929, April.
    21. Liu, Caihong & Ji, Hannah & Ji, Jonah, 2022. "Mobile information technology's impacts on service innovation performance of manufacturing enterprises," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    22. Zhu, Minghao & Liang, Chen & Yeung, Andy C.L. & Zhou, Honggeng, 2024. "The impact of intelligent manufacturing on labor productivity: An empirical analysis of Chinese listed manufacturing companies," International Journal of Production Economics, Elsevier, vol. 267(C).
    23. Orlic, Edvard & Hashi, Iraj & Hisarciklilar, Mehtap, 2018. "Cross sectoral FDI spillovers and their impact on manufacturing productivity," International Business Review, Elsevier, vol. 27(4), pages 777-796.
    24. Yang, Haochang & Li, Lianshui & Liu, Yaobin, 2022. "The effect of manufacturing intelligence on green innovation performance in China," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    25. Zhang, Wei & Zhang, Ting & Li, Hangyu & Zhang, Han, 2022. "Dynamic spillover capacity of R&D and digital investments in China's manufacturing industry under long-term technological progress based on the industry chain perspective," Technology in Society, Elsevier, vol. 71(C).
    26. Mardones, Cristian & Velásquez, Andrés, 2021. "Macroeconomic, intersectoral, and environmental effects of R&D subsidies in Chile: An input-output approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    27. Tsekouras, Kostas & Chatzistamoulou, Nikos & Kounetas, Kostas & Broadstock, David C., 2016. "Spillovers, path dependence and the productive performance of European transportation sectors in the presence of technology heterogeneity," Technological Forecasting and Social Change, Elsevier, vol. 102(C), pages 261-274.
    28. Han, Jie & Jiang, Cailou & Liu, Rong, 2023. "Does intelligent transformation trigger technology innovation in China's NEV enterprises?," Energy, Elsevier, vol. 270(C).
    29. Wen, Huwei & Zhong, Qiming & Lee, Chien-Chiang, 2022. "Digitalization, competition strategy and corporate innovation: Evidence from Chinese manufacturing listed companies," International Review of Financial Analysis, Elsevier, vol. 82(C).
    30. Lee, Chien-Chiang & Qin, Shuai & Li, Yaya, 2022. "Does industrial robot application promote green technology innovation in the manufacturing industry?," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    31. Jiaofeng Pan & Jianxin Guo, 2022. "Innovative Collaboration and Acceleration: an Integrated Framework Based on Knowledge Transfer and Triple Helix," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 13(4), pages 3223-3247, December.
    32. André Spithoven & Bruno Merlevede, 2023. "The productivity impact of R&D and FDI spillovers: characterising regional path development," The Journal of Technology Transfer, Springer, vol. 48(2), pages 560-590, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Boqiang & Xu, Chongchong, 2024. "Enhancing energy-environmental performance through industrial intelligence: Insights from Chinese prefectural-level cities," Applied Energy, Elsevier, vol. 365(C).
    2. Zhou, Zhongsheng & Li, Zhuo & Du, Shanzhong & Cao, June, 2024. "Robot adoption and enterprise R&D manipulation: Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    3. Wang, Hua & Liao, Lingtao & Wu, Ji (George), 2023. "Robot adoption and firm's capacity utilization: Evidence from China," Pacific-Basin Finance Journal, Elsevier, vol. 82(C).
    4. Lin, Boqiang & Xu, Chongchong, 2024. "The effects of industrial robots on firm energy intensity: From the perspective of technological innovation and electrification," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
    5. Zhang, Xinchun & Sun, Murong & Liu, Jianxu & Xu, Aijia, 2024. "The nexus between industrial robot and employment in China: The effects of technology substitution and technology creation," Technological Forecasting and Social Change, Elsevier, vol. 202(C).
    6. Liu, Liang & Yang, Kun & Fujii, Hidemichi & Liu, Jun, 2021. "Artificial intelligence and energy intensity in China’s industrial sector: Effect and transmission channel," Economic Analysis and Policy, Elsevier, vol. 70(C), pages 276-293.
    7. Ke-Liang Wang & Ting-Ting Sun & Ru-Yu Xu, 2023. "The impact of artificial intelligence on total factor productivity: empirical evidence from China’s manufacturing enterprises," Economic Change and Restructuring, Springer, vol. 56(2), pages 1113-1146, April.
    8. Zhou, Wei & Zhuang, Yan & Chen, Yan, 2024. "How does artificial intelligence affect pollutant emissions by improving energy efficiency and developing green technology," Energy Economics, Elsevier, vol. 131(C).
    9. Basso, Henrique S. & Jimeno, Juan F., 2021. "From secular stagnation to robocalypse? Implications of demographic and technological changes," Journal of Monetary Economics, Elsevier, vol. 117(C), pages 833-847.
    10. Siliang Tong & Nan Jia & Xueming Luo & Zheng Fang, 2021. "The Janus face of artificial intelligence feedback: Deployment versus disclosure effects on employee performance," Strategic Management Journal, Wiley Blackwell, vol. 42(9), pages 1600-1631, September.
    11. Cristiano CODAGNONE & Giovanni LIVA & Egidijus BARCEVICIUS & Gianluca MISURACA & Luka KLIMAVICIUTE & Michele BENEDETTI & Irene VANINI & Giancarlo VECCHI & Emily RYEN GLOINSON & Katherine STEWART & Sti, 2020. "Assessing the impacts of digital government transformation in the EU: Conceptual framework and empirical case studies," JRC Research Reports JRC120865, Joint Research Centre.
    12. Wang, Jiaxin & Zhao, Mu & Huang, Xiang & Song, Zilong & Sun, Di, 2024. "Supply chain diffusion mechanisms for AI applications: A perspective on audit pricing," International Review of Financial Analysis, Elsevier, vol. 93(C).
    13. Lee, Chien-Chiang & Qin, Shuai & Li, Yaya, 2022. "Does industrial robot application promote green technology innovation in the manufacturing industry?," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    14. Zhu, Jun & Zhang, Jingting & Feng, Yiqing, 2022. "Hard budget constraints and artificial intelligence technology," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    15. Ozgun, Burcu & Broekel, Tom, 2021. "The geography of innovation and technology news - An empirical study of the German news media," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    16. Hémous, David & Dechezleprêtre, Antoine & Olsen, Morten & Zanella, carlo, 2019. "Automating Labor: Evidence from Firm-level Patent Data," CEPR Discussion Papers 14249, C.E.P.R. Discussion Papers.
    17. Lee, Chien-Chiang & Yan, Jingyang & Wang, Fuhao, 2024. "Impact of population aging on food security in the context of artificial intelligence: Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
    18. Yang, Siying & Liu, Fengshuo, 2024. "Impact of industrial intelligence on green total factor productivity: The indispensability of the environmental system," Ecological Economics, Elsevier, vol. 216(C).
    19. Cheng, Can & Luo, Jiayu & Zhu, Chun & Zhang, Shangfeng, 2024. "Artificial intelligence and the skill premium: A numerical analysis of theoretical models," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    20. Naude, Wim, 2019. "The race against the robots and the fallacy of the giant cheesecake: Immediate and imagined impacts of artificial intelligence," MERIT Working Papers 2019-005, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).

    More about this item

    Keywords

    Manufacturing intelligentization; Technological innovation; Technology spillover effects; Horizontal linkage; Forward linkage; Backward linkage;
    All these keywords.

    JEL classification:

    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General
    • L60 - Industrial Organization - - Industry Studies: Manufacturing - - - General
    • O30 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:204:y:2024:i:c:s0040162524002142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.