IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v18y2024i3s1751157724000610.html
   My bibliography  Save this article

A co-citation approach to the analysis on the interaction between scientific and technological knowledge

Author

Listed:
  • Chen, Xi
  • Mao, Jin
  • Li, Gang

Abstract

A systematic understanding of the interaction between science and technology is beneficial for innovation policies aimed at improving the utilization of science to advance technological development. Traditional approaches primarily focus on direct citation-based linkages, often overlooking the complex, evolving nature of the interaction between scientific and technological knowledge (S&T knowledge interaction). To address this issue, we proposed a novel methodological framework utilizing co-citations between patents and papers, offering a more comprehensive insight into the S&T knowledge interaction. First, we measured the linkage between scientific and technological knowledge based on co-citations between patents and papers. Then, we identified interaction communities and analyzed their evolution. This method not only captures the potential linkages between patents and papers, but also reveals consolidated interactions and rapid changes in S&T knowledge interaction. The results highlight distinct phases in the evolution of S&T knowledge interaction, which are instrumental for understanding how S&T knowledge interaction evolve, especially in rapidly advancing fields like genetic engineering. The insights gained are crucial for academics and practitioners in anticipating future trends and navigating the evolving landscape of science and technology.

Suggested Citation

  • Chen, Xi & Mao, Jin & Li, Gang, 2024. "A co-citation approach to the analysis on the interaction between scientific and technological knowledge," Journal of Informetrics, Elsevier, vol. 18(3).
  • Handle: RePEc:eee:infome:v:18:y:2024:i:3:s1751157724000610
    DOI: 10.1016/j.joi.2024.101548
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157724000610
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2024.101548?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guijie Zhang & Luning Liu & Fangfang Wei, 2019. "Key nodes mining in the inventor–author knowledge diffusion network," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 721-735, March.
    2. Wang, Jian & Veugelers, Reinhilde & Stephan, Paula, 2017. "Bias against novelty in science: A cautionary tale for users of bibliometric indicators," Research Policy, Elsevier, vol. 46(8), pages 1416-1436.
    3. Hou, Jianhua & Tang, Shiqi & Zhang, Yang & Song, Haoyang, 2023. "Does prior knowledge affect patent technology diffusion? A semantic-based patent citation contribution analysis," Journal of Informetrics, Elsevier, vol. 17(2).
    4. Michaël Bikard & Matt Marx, 2020. "Bridging Academia and Industry: How Geographic Hubs Connect University Science and Corporate Technology," Management Science, INFORMS, vol. 66(8), pages 3425-3443, August.
    5. Veugelers, Reinhilde & Wang, Jian, 2019. "Scientific novelty and technological impact," Research Policy, Elsevier, vol. 48(6), pages 1362-1372.
    6. Hötte, Kerstin & Pichler, Anton & Lafond, François, 2021. "The rise of science in low-carbon energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    7. Wang, Jean J. & Ye, Fred Y., 2021. "Probing into the interactions between papers and patents of new CRISPR/CAS9 technology: A citation comparison," Journal of Informetrics, Elsevier, vol. 15(4).
    8. Xu, Haiyun & Winnink, Jos & Yue, Zenghui & Liu, Ziqiang & Yuan, Guoting, 2020. "Topic-linked innovation paths in science and technology," Journal of Informetrics, Elsevier, vol. 14(2).
    9. Lee Fleming & Olav Sorenson, 2004. "Science as a map in technological search," Strategic Management Journal, Wiley Blackwell, vol. 25(8‐9), pages 909-928, August.
    10. Qing Ke, 2023. "Interdisciplinary research and technological impact: evidence from biomedicine," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(4), pages 2035-2077, April.
    11. Kenneth Arrow, 1962. "Economic Welfare and the Allocation of Resources for Invention," NBER Chapters, in: The Rate and Direction of Inventive Activity: Economic and Social Factors, pages 609-626, National Bureau of Economic Research, Inc.
    12. Ke, Qing, 2020. "Technological impact of biomedical research: The role of basicness and novelty," Research Policy, Elsevier, vol. 49(7).
    13. Brooks, Harvey, 1994. "The relationship between science and technology," Research Policy, Elsevier, vol. 23(5), pages 477-486, September.
    14. Henry Small, 1973. "Co‐citation in the scientific literature: A new measure of the relationship between two documents," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 24(4), pages 265-269, July.
    15. Arts, Sam & Hou, Jianan & Gomez, Juan Carlos, 2021. "Natural language processing to identify the creation and impact of new technologies in patent text: Code, data, and new measures," Research Policy, Elsevier, vol. 50(2).
    16. Bernal, Pilar & Carree, Martin & Lokshin, Boris, 2022. "Knowledge spillovers, R&D partnerships and innovation performance," Technovation, Elsevier, vol. 115(C).
    17. Ke, Qing, 2020. "An analysis of the evolution of science-technology linkage in biomedicine," Journal of Informetrics, Elsevier, vol. 14(4).
    18. Xu, Haiyun & Yue, Zenghui & Pang, Hongshen & Elahi, Ehsan & Li, Jing & Wang, Lu, 2022. "Integrative model for discovering linked topics in science and technology," Journal of Informetrics, Elsevier, vol. 16(2).
    19. Xiaozan Lyu & Ping Zhou & Loet Leydesdorff, 2020. "Eco-system mapping of techno-science linkages at the level of scholarly journals and fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 2037-2055, September.
    20. Ji-ping Gao & Kun Ding & Li Teng & Jie Pang, 2012. "Hybrid documents co-citation analysis: making sense of the interaction between science and technology in technology diffusion," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(2), pages 459-471, November.
    21. Xian Li & Dangzhi Zhao & Xiaojun Hu, 2020. "Gatekeepers in knowledge transfer between science and technology: an exploratory study in the area of gene editing," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1261-1277, August.
    22. Matt Marx & Aaron Fuegi, 2020. "Reliance on Science by Inventors: Hybrid Extraction of In-text Patent-to-Article Citations," NBER Working Papers 27987, National Bureau of Economic Research, Inc.
    23. Chen, Xi & Mao, Jin & Ma, Yaxue & Li, Gang, 2024. "The knowledge linkage between science and technology influences corporate technological innovation: Evidence from scientific publications and patents," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    24. Marc Gruber & Dietmar Harhoff & Karin Hoisl, 2013. "Knowledge Recombination Across Technological Boundaries: Scientists vs. Engineers," Management Science, INFORMS, vol. 59(4), pages 837-851, April.
    25. Michael Roach & Wesley M. Cohen, 2013. "Lens or Prism? Patent Citations as a Measure of Knowledge Flows from Public Research," Management Science, INFORMS, vol. 59(2), pages 504-525, October.
    26. Felix Poege & Dietmar Harhoff & Fabian Gaessler & Stefano Baruffaldi, 2019. "Science Quality and the Value of Inventions," Papers 1903.05020, arXiv.org, revised Apr 2019.
    27. Ba, Zhichao & Liang, Zhentao, 2021. "A novel approach to measuring science-technology linkage: From the perspective of knowledge network coupling," Journal of Informetrics, Elsevier, vol. 15(3).
    28. Ardito, Lorenzo & Petruzzelli, Antonio Messeni & Ghisetti, Claudia, 2019. "The impact of public research on the technological development of industry in the green energy field," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 25-35.
    29. Kwon, Seokbeom, 2022. "Interdisciplinary knowledge integration as a unique knowledge source for technology development and the role of funding allocation," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xi & Mao, Jin & Ma, Yaxue & Li, Gang, 2024. "The knowledge linkage between science and technology influences corporate technological innovation: Evidence from scientific publications and patents," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    2. Wang, Fang, 2024. "Does the recombination of distant scientific knowledge generate valuable inventions? An analysis of pharmaceutical patents," Technovation, Elsevier, vol. 130(C).
    3. René Belderbos & Nazareno Braito & Jian Wang, 2024. "Heterogeneous university research and firm R&D location decisions: research orientation, academic quality, and investment type," The Journal of Technology Transfer, Springer, vol. 49(5), pages 1959-1989, October.
    4. Keye Wu & Ziyue Xie & Jia Tina Du, 2024. "Does science disrupt technology? Examining science intensity, novelty, and recency through patent-paper citations in the pharmaceutical field," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(9), pages 5469-5491, September.
    5. Pezzoni, Michele & Veugelers, Reinhilde & Visentin, Fabiana, 2022. "How fast is this novel technology going to be a hit? Antecedents predicting follow-on inventions," Research Policy, Elsevier, vol. 51(3).
    6. Fernández, Ana María & Ferrándiz, Esther & Medina, Jennifer, 2022. "The diffusion of energy technologies. Evidence from renewable, fossil, and nuclear energy patents," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    7. Ba, Zhichao & Liang, Zhentao, 2021. "A novel approach to measuring science-technology linkage: From the perspective of knowledge network coupling," Journal of Informetrics, Elsevier, vol. 15(3).
    8. Xu, Haiyun & Yue, Zenghui & Pang, Hongshen & Elahi, Ehsan & Li, Jing & Wang, Lu, 2022. "Integrative model for discovering linked topics in science and technology," Journal of Informetrics, Elsevier, vol. 16(2).
    9. Felix Poege & Dietmar Harhoff & Fabian Gaessler & Stefano Baruffaldi, 2019. "Science Quality and the Value of Inventions," Papers 1903.05020, arXiv.org, revised Apr 2019.
    10. Matt Marx & Aaron Fuegi, 2020. "Reliance on science: Worldwide front‐page patent citations to scientific articles," Strategic Management Journal, Wiley Blackwell, vol. 41(9), pages 1572-1594, September.
    11. Ke, Qing, 2020. "Technological impact of biomedical research: The role of basicness and novelty," Research Policy, Elsevier, vol. 49(7).
    12. Choi, Jin-Uk & Lee, Chang-Yang, 2022. "The differential effects of basic research on firm R&D productivity: The conditioning role of technological diversification," Technovation, Elsevier, vol. 118(C).
    13. Arora, Ashish & Belenzon, Sharon & Dionisi, Bernardo, 2023. "First-mover advantage and the private value of public science," Research Policy, Elsevier, vol. 52(9).
    14. Ashish Arora & Sharon Belenzon & Jungkyu Suh, 2022. "Science and the Market for Technology," Management Science, INFORMS, vol. 68(10), pages 7176-7201, October.
    15. Plantec, Quentin & Le Masson, Pascal & Weil, Benoît, 2021. "Impact of knowledge search practices on the originality of inventions: A study in the oil & gas industry through dynamic patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    16. Cappelli, Riccardo & Corsino, Marco & Laursen, Keld & Torrisi, Salvatore, 2023. "Technological competition and patent strategy: Protecting innovation, preempting rivals and defending the freedom to operate," Research Policy, Elsevier, vol. 52(6).
    17. Shuo Xu & Ling Li & Xin An, 2023. "Do academic inventors have diverse interests?," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(2), pages 1023-1053, February.
    18. Nagar, Jay Prakash & Breschi, Stefano & Fosfuri, Andrea, 2024. "ERC science and invention: Does ERC break free from the EU Paradox?," Research Policy, Elsevier, vol. 53(8).
    19. Qing Ke, 2023. "Interdisciplinary research and technological impact: evidence from biomedicine," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(4), pages 2035-2077, April.
    20. Shin, Seungryul Ryan & Lee, Jisoo & Jung, Yura Rosemary & Hwang, Junseok, 2022. "The diffusion of scientific discoveries in government laboratories: The role of patents filed by government scientists," Research Policy, Elsevier, vol. 51(5).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:18:y:2024:i:3:s1751157724000610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.