IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v117y2017icp25-37.html
   My bibliography  Save this article

TeknoRoadmap, an approach for depicting emerging technologies

Author

Listed:
  • Bildosola, Iñaki
  • Río-Bélver, Rosa María
  • Garechana, Gaizka
  • Cilleruelo, Ernesto

Abstract

One of the biggest challenges for current enterprises is the adoption of emerging technologies as soon as these provide competitive improvements. In this sense, several types of technology forecasting and surveillance activities are present in their daily activity. From the academic point of view, technology forecasting activities involve the combination of methods of a diverse nature, with which the technology is depicted and its potential future paths are discussed. Within this conceptual framework, the present work aims at describing a novel approach, known as TeknoRoadmap, which combines bibliometrics and technology forecasting methods to depict emerging technologies. Thus, this contribution aims to widen the scope compared to those provided by previous works within the field, and to that end, the depiction of emerging technologies is provided based on two main elements, namely: the profile of the research activity; and a complete technology roadmap. The approach combines consolidated methods such as text mining and roadmapping, and novel ones such as web content mining, with special attention given to forecasting activities. The work provides a detailed description of the steps on which the approach is structured, as well as the results of one specific application to a cutting edge emerging technology: cloud computing.

Suggested Citation

  • Bildosola, Iñaki & Río-Bélver, Rosa María & Garechana, Gaizka & Cilleruelo, Ernesto, 2017. "TeknoRoadmap, an approach for depicting emerging technologies," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 25-37.
  • Handle: RePEc:eee:tefoso:v:117:y:2017:i:c:p:25-37
    DOI: 10.1016/j.techfore.2017.01.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162516304310
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2017.01.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van Eck, N.J.P. & Waltman, L., 2009. "How to Normalize Co-Occurrence Data? An Analysis of Some Well-Known Similarity Measures," ERIM Report Series Research in Management ERS-2009-001-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    2. Gaizka Garechana & Rosa Rio-Belver & Ernesto Cilleruelo & Jaso Larruscain Sarasola, 2015. "Clusterization and mapping of waste recycling science. Evolution of research from 2002 to 2012," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(7), pages 1431-1446, July.
    3. Huang, Lu & Zhang, Yi & Guo, Ying & Zhu, Donghua & Porter, Alan L., 2014. "Four dimensional Science and Technology planning: A new approach based on bibliometrics and technology roadmapping," Technological Forecasting and Social Change, Elsevier, vol. 81(C), pages 39-48.
    4. D. Thorleuchter & D. Van Den Poel, 2013. "Weak Signal Identification with Semantic Web Mining," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 13/860, Ghent University, Faculty of Economics and Business Administration.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Izaskun Alvarez-Meaza & Enara Zarrabeitia-Bilbao & Rosa Maria Rio-Belver & Gaizka Garechana-Anacabe, 2020. "Fuel-Cell Electric Vehicles: Plotting a Scientific and Technological Knowledge Map," Sustainability, MDPI, vol. 12(6), pages 1-25, March.
    2. Leonid Gokhberg & Ilya Kuzminov & Pavel Bakhtin & Elena Tochilina & Alexander Chulok & Anton Timofeev & Alina Lavrinenko, 2017. "Big-Data-Augmented Approach to Emerging Technologies Identification: Case of Agriculture and Food Sector," HSE Working papers WP BRP 76/STI/2017, National Research University Higher School of Economics.
    3. Sebastián Escobar & Margareth Santander & Pilar Useche & Carlos Contreras & Jader Rodríguez, 2020. "Aligning Strategic Objectives with Research and Development Activities in a Soft Commodity Sector: A Technological Plan for Colombian Cocoa Producers," Agriculture, MDPI, vol. 10(5), pages 1-32, April.
    4. Zamani, Mehdi & Yalcin, Haydar & Naeini, Ali Bonyadi & Zeba, Gordana & Daim, Tugrul U, 2022. "Developing metrics for emerging technologies: identification and assessment," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    5. Böhmecke-Schwafert, Moritz & García Moreno, Eduardo, 2023. "Exploring blockchain-based innovations for economic and sustainable development in the global south: A mixed-method approach based on web mining and topic modeling," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    6. Yuskevich, Ilya & Smirnova, Ksenia & Vingerhoeds, Rob & Golkar, Alessandro, 2021. "Model-based approaches for technology planning and roadmapping: Technology forecasting and game-theoretic modeling," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    7. Iñaki Bildosola & Gaizka Garechana & Enara Zarrabeitia & Ernesto Cilleruelo, 2020. "Characterization of strategic emerging technologies: the case of big data," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 45-60, March.
    8. Li, Xin & Xie, Qianqian & Daim, Tugrul & Huang, Lucheng, 2019. "Forecasting technology trends using text mining of the gaps between science and technology: The case of perovskite solar cell technology," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 432-449.
    9. Seyed Mahmoud Zanjirchi & Mina Rezaeian Abrishami & Negar Jalilian, 2019. "Four decades of fuzzy sets theory in operations management: application of life-cycle, bibliometrics and content analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1289-1309, June.
    10. Kristóf Gyódi & Łukasz Nawaro & Michał Paliński & Maciej Wilamowski, 2023. "Informing policy with text mining: technological change and social challenges," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(1), pages 933-954, February.
    11. Li, Xin & Wu, Yundi & Cheng, Haolun & Xie, Qianqian & Daim, Tugrul, 2023. "Identifying technology opportunity using SAO semantic mining and outlier detection method: A case of triboelectric nanogenerator technology," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    12. Zhang, Hao & Daim, Tugrul & Zhang, Yunqiu (Peggy), 2021. "Integrating patent analysis into technology roadmapping: A latent dirichlet allocation based technology assessment and roadmapping in the field of Blockchain," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    13. Samaneh Mohebalizadeh & Soroush Ghazinoori, 2021. "Developing a Technology Roadmap for Regenerative Medicine: A Participatory Action Research," Systemic Practice and Action Research, Springer, vol. 34(4), pages 377-397, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niccolò Comerio & Fernanda Strozzi, 2019. "Tourism and its economic impact: A literature review using bibliometric tools," Tourism Economics, , vol. 25(1), pages 109-131, February.
    2. Shao, Zhen & Zheng, Qingru & Yang, Shanlin & Gao, Fei & Cheng, Manli & Zhang, Qiang & Liu, Chen, 2020. "Modeling and forecasting the electricity clearing price: A novel BELM based pattern classification framework and a comparative analytic study on multi-layer BELM and LSTM," Energy Economics, Elsevier, vol. 86(C).
    3. Coccia, Mario & Wang, Lili, 2015. "Path-breaking directions of nanotechnology-based chemotherapy and molecular cancer therapy," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 155-169.
    4. Zhang, Yi & Huang, Ying & Porter, Alan L. & Zhang, Guangquan & Lu, Jie, 2019. "Discovering and forecasting interactions in big data research: A learning-enhanced bibliometric study," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 795-807.
    5. Vuong, Quan-Hoang & Huyen, Nguyen Thanh Thanh & Pham, Thanh-Hang & Phuong, Luong Anh & Nguyen, Minh-Hoang, 2020. "Mapping the intellectual and conceptual structure of research on gender issues in the family business: A bibliometric review," OSF Preprints jgnrw, Center for Open Science.
    6. Tom Broekel & Matthias Brachert, 2015. "The structure and evolution of inter-sectoral technological complementarity in R&D in Germany from 1990 to 2011," Journal of Evolutionary Economics, Springer, vol. 25(4), pages 755-785, September.
    7. Serhat Burmaoglu & Ozcan Saritas, 2019. "An evolutionary analysis of the innovation policy domain: Is there a paradigm shift?," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 823-847, March.
    8. Massimiliano M. Pellegrini & Riccardo Rialti & Giacomo Marzi & Andrea Caputo, 2020. "Sport entrepreneurship: A synthesis of existing literature and future perspectives," International Entrepreneurship and Management Journal, Springer, vol. 16(3), pages 795-826, September.
    9. Cathelijn J. F. Waaijer & Cornelis A. Bochove & Nees Jan Eck, 2011. "On the map: Nature and Science editorials," Scientometrics, Springer;Akadémiai Kiadó, vol. 86(1), pages 99-112, January.
    10. María Pinto & Rosaura Fernández-Pascual & David Caballero-Mariscal & Dora Sales, 2020. "Information literacy trends in higher education (2006–2019): visualizing the emerging field of mobile information literacy," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1479-1510, August.
    11. Chungil Chae & Jeong-Ha Yim & Jaeeun Lee & Sung Jun Jo & Jeong Rok Oh, 2020. "The Bibliometric Keywords Network Analysis of Human Resource Management Research Trends: The Case of Human Resource Management Journals in South Korea," Sustainability, MDPI, vol. 12(14), pages 1-37, July.
    12. Lilian Cervo Cabrera & Carlos Eduardo Caldarelli & Marcia Regina Gabardo Camara, 2020. "Mapping collaboration in international coffee certification research," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 2597-2618, September.
    13. Duygu Buyukyazici & Leonardo Mazzoni & Massimo Riccaboni & Francesco Serti, 2024. "Workplace skills as regional capabilities: relatedness, complexity and industrial diversification of regions," Regional Studies, Taylor & Francis Journals, vol. 58(3), pages 469-489, March.
    14. Mikel Alayo & Txomin Iturralde & Amaia Maseda & Gloria Aparicio, 2021. "Mapping family firm internationalization research: bibliometric and literature review," Review of Managerial Science, Springer, vol. 15(6), pages 1517-1560, August.
    15. Evi Sachini & Nikolaos Karampekios & Pierpaolo Brutti & Konstantinos Sioumalas-Christodoulou, 2020. "Should I stay or should I go? Using bibliometrics to identify the international mobility of highly educated Greek manpower," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 641-663, October.
    16. Elizabeth Gibson & Tugrul Daim & Edwin Garces & Marina Dabic, 2018. "Technology Foresight: A Bibliometric Analysis to Identify Leading and Emerging Methods," Foresight and STI Governance (Foresight-Russia till No. 3/2015), National Research University Higher School of Economics, vol. 12(1), pages 6-24.
    17. Yang, Siluo & Han, Ruizhen & Wolfram, Dietmar & Zhao, Yuehua, 2016. "Visualizing the intellectual structure of information science (2006–2015): Introducing author keyword coupling analysis," Journal of Informetrics, Elsevier, vol. 10(1), pages 132-150.
    18. Ying Huang & Wolfgang Glänzel & Lin Zhang, 2021. "Tracing the development of mapping knowledge domains," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6201-6224, July.
    19. Marcos Ferasso & Tatiana Beliaeva & Sascha Kraus & Thomas Clauss & Domingo Ribeiro‐Soriano, 2020. "Circular economy business models: The state of research and avenues ahead," Business Strategy and the Environment, Wiley Blackwell, vol. 29(8), pages 3006-3024, December.
    20. Raphaël Maucuer & Alexandre Renaud & Sébastien Ronteau & Laurent Muzellec, 2022. "What can we learn from marketers? A bibliometric analysis of the marketing literature on business model research," Post-Print hal-03718522, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:117:y:2017:i:c:p:25-37. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.