Patent representation learning with a novel design of patent ontology: Case study on PEM patents
Author
Abstract
Suggested Citation
DOI: 10.1016/j.techfore.2022.121912
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Rotolo, Daniele & Hicks, Diana & Martin, Ben R., 2015.
"What is an emerging technology?,"
Research Policy, Elsevier, vol. 44(10), pages 1827-1843.
- Daniele Rotolo & Diana Hicks & Ben Martin, 2015. "What is an emerging technology?," SPRU Working Paper Series 2015-06, SPRU - Science Policy Research Unit, University of Sussex Business School.
- Venugopalan, Subhashini & Rai, Varun, 2015. "Topic based classification and pattern identification in patents," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 236-250.
- Yuan Zhou & Fang Dong & Yufei Liu & Zhaofu Li & JunFei Du & Li Zhang, 2020. "Forecasting emerging technologies using data augmentation and deep learning," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(1), pages 1-29, April.
- Li, Xin & Xie, Qianqian & Jiang, Jiaojiao & Zhou, Yuan & Huang, Lucheng, 2019. "Identifying and monitoring the development trends of emerging technologies using patent analysis and Twitter data mining: The case of perovskite solar cell technology," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 687-705.
- Jeong, Yujin & Park, Inchae & Yoon, Byungun, 2019. "Identifying emerging Research and Business Development (R&BD) areas based on topic modeling and visualization with intellectual property right data," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 655-672.
- Jaeyoung Kim & Janghyeok Yoon & Eunjeong Park & Sungchul Choi, 2020. "Patent document clustering with deep embeddings," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(2), pages 563-577, May.
- Saeed-Ul Hassan & Mubashir Imran & Sehrish Iqbal & Naif Radi Aljohani & Raheel Nawaz, 2018. "Deep context of citations using machine-learning models in scholarly full-text articles," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(3), pages 1645-1662, December.
- Xu, Jianguo & Guo, Lixiang & Jiang, Jiang & Ge, Bingfeng & Li, Mengjun, 2019. "A deep learning methodology for automatic extraction and discovery of technical intelligence," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 339-351.
- Choi, Seokkyu & Lee, Hyeonju & Park, Eunjeong & Choi, Sungchul, 2022. "Deep learning for patent landscaping using transformer and graph embedding," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
- Song, Kisik & Kim, Kyuwoong & Lee, Sungjoo, 2018. "Identifying promising technologies using patents: A retrospective feature analysis and a prospective needs analysis on outlier patents," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 118-132.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yuan Zhou & Fang Dong & Yufei Liu & Liang Ran, 2021. "A deep learning framework to early identify emerging technologies in large-scale outlier patents: an empirical study of CNC machine tool," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 969-994, February.
- Puccetti, Giovanni & Giordano, Vito & Spada, Irene & Chiarello, Filippo & Fantoni, Gualtiero, 2023. "Technology identification from patent texts: A novel named entity recognition method," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
- Yang, Zaoli & Zhang, Weijian & Yuan, Fei & Islam, Nazrul, 2021. "Measuring topic network centrality for identifying technology and technological development in online communities," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
- Li, Munan & Wang, Wenshu & Zhou, Keyu, 2021. "Exploring the technology emergence related to artificial intelligence: A perspective of coupling analyses," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
- Zhenyu Yang & Wenyu Zhang & Zhimin Wang & Xiaoling Huang, 2024. "A deep learning-based method for predicting the emerging degree of research topics using emerging index," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(7), pages 4021-4042, July.
- Lijie Feng & Kehui Liu & Jinfeng Wang & Kuo-Yi Lin & Ke Zhang & Luyao Zhang, 2022. "Identifying Promising Technologies of Electric Vehicles from the Perspective of Market and Technical Attributes," Energies, MDPI, vol. 15(20), pages 1-22, October.
- Song, Kisik & Yun, Siyeong & Kim, Leehee & Lee, Sungjoo, 2022. "Investigating new design concepts based on customer value and patent data: The case of a future mobility door," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
- Zamani, Mehdi & Yalcin, Haydar & Naeini, Ali Bonyadi & Zeba, Gordana & Daim, Tugrul U, 2022. "Developing metrics for emerging technologies: identification and assessment," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
- Yunlei Lin & Yuan Zhou, 2023. "Identification of Hydrogen-Energy-Related Emerging Technologies Based on Text Mining," Sustainability, MDPI, vol. 16(1), pages 1-19, December.
- Ghaffari, Mohsen & Aliahmadi, Alireza & Khalkhali, Abolfazl & Zakery, Amir & Daim, Tugrul U. & Yalcin, Haydar, 2023. "Topic-based technology mapping using patent data analysis: A case study of vehicle tires," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
- Ryosuke L. Ohniwa & Kunio Takeyasu & Aiko Hibino, 2022. "Researcher dynamics in the generation of emerging topics in life sciences and medicine," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(2), pages 871-884, February.
- Liang Chen & Shuo Xu & Lijun Zhu & Jing Zhang & Xiaoping Lei & Guancan Yang, 2020. "A deep learning based method for extracting semantic information from patent documents," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 289-312, October.
- Jinho Choi & Nina Shin & Yong Sik Chang, 2021. "Strategic Investment Decisions for Emerging Technology Fields in the Health Care Sector Based on M&A Analysis," Sustainability, MDPI, vol. 13(7), pages 1-20, March.
- Yang, Zaoli & Wu, Qingyang & Venkatachalam, K. & Li, Yuchen & Xu, Bing & Trojovský, Pavel, 2022. "Topic identification and sentiment trends in Weibo and WeChat content related to intellectual property in China," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
- Gozuacik, Necip & Sakar, C. Okan & Ozcan, Sercan, 2023. "Technological forecasting based on estimation of word embedding matrix using LSTM networks," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
- Ante, Lennart, 2022. "The relationship between readability and scientific impact: Evidence from emerging technology discourses," Journal of Informetrics, Elsevier, vol. 16(1).
- Chiarello, Filippo & Giordano, Vito & Spada, Irene & Barandoni, Simone & Fantoni, Gualtiero, 2024. "Future applications of generative large language models: A data-driven case study on ChatGPT," Technovation, Elsevier, vol. 133(C).
- Zhang, Hao & Daim, Tugrul & Zhang, Yunqiu (Peggy), 2021. "Integrating patent analysis into technology roadmapping: A latent dirichlet allocation based technology assessment and roadmapping in the field of Blockchain," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
- Pantano, Eleonora & Priporas, Constantinos-Vasilios & Stylos, Nikolaos, 2018. "Knowledge Push Curve (KPC) in retailing: Evidence from patented innovations analysis affecting retailers' competitiveness," Journal of Retailing and Consumer Services, Elsevier, vol. 44(C), pages 150-160.
- Yuan Zhou & Heng Lin & Yufei Liu & Wei Ding, 2019. "A novel method to identify emerging technologies using a semi-supervised topic clustering model: a case of 3D printing industry," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(1), pages 167-185, July.
More about this item
Keywords
Patent representation; Technology composition; Technology association; Patent ontology; Heterogeneous graph embedding;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:183:y:2022:i:c:s0040162522004346. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.