IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v127y2022i2d10.1007_s11192-021-04233-1.html
   My bibliography  Save this article

Researcher dynamics in the generation of emerging topics in life sciences and medicine

Author

Listed:
  • Ryosuke L. Ohniwa

    (University of Tsukuba
    National Taiwan University)

  • Kunio Takeyasu

    (National Taiwan University
    Kyoto University)

  • Aiko Hibino

    (Hirosaki University)

Abstract

Understanding the driving forces that generate emerging topics (ETs or Emerging Research Topics) will assist in the sound development of science and technologies. In the present study, we aim to clarify the researcher dynamics of generating and developing ETs in life sciences and medicine over the past half-century by analyzing the pre-, contemporary-, and post-participation of researchers publishing articles containing the emerging keywords that are elements of ETs. Our results suggest that, while manpower needs for publication have increased, less manpower is actually required to generate ETs these days and that pre-participation in certain research topics has become important to generate regular ETs but not Nobel Prize-class ones. Finally, we discovered that, in this post-genomic era, those researchers who generate ETs also continue to focus on those fields. These trends illustrate a mode shift in the scientific practice of researchers that have generated and developed ETs over the last 50 years as well as highlight the significance of funding projects with high probabilities of generating high-impact ETs.

Suggested Citation

  • Ryosuke L. Ohniwa & Kunio Takeyasu & Aiko Hibino, 2022. "Researcher dynamics in the generation of emerging topics in life sciences and medicine," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(2), pages 871-884, February.
  • Handle: RePEc:spr:scient:v:127:y:2022:i:2:d:10.1007_s11192-021-04233-1
    DOI: 10.1007/s11192-021-04233-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-021-04233-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-021-04233-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Shuo & Hao, Liyuan & Yang, Guancan & Lu, Kun & An, Xin, 2021. "A topic models based framework for detecting and forecasting emerging technologies," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    2. Huang, Lu & Chen, Xiang & Ni, Xingxing & Liu, Jiarun & Cao, Xiaoli & Wang, Changtian, 2021. "Tracking the dynamics of co-word networks for emerging topic identification," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    3. Hanning Guo & Scott Weingart & Katy Börner, 2011. "Mixed-indicators model for identifying emerging research areas," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(1), pages 421-435, October.
    4. Xu, Haiyun & Winnink, Jos & Yue, Zenghui & Zhang, Huiling & Pang, Hongshen, 2021. "Multidimensional Scientometric indicators for the detection of emerging research topics," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    5. Small, Henry & Boyack, Kevin W. & Klavans, Richard, 2014. "Identifying emerging topics in science and technology," Research Policy, Elsevier, vol. 43(8), pages 1450-1467.
    6. Rotolo, Daniele & Hicks, Diana & Martin, Ben R., 2015. "What is an emerging technology?," Research Policy, Elsevier, vol. 44(10), pages 1827-1843.
    7. Yan, Erjia, 2014. "Research dynamics: Measuring the continuity and popularity of research topics," Journal of Informetrics, Elsevier, vol. 8(1), pages 98-110.
    8. Ryosuke L. Ohniwa & Aiko Hibino, 2019. "Generating process of emerging topics in the life sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1549-1561, December.
    9. Yuan Zhou & Fang Dong & Yufei Liu & Zhaofu Li & JunFei Du & Li Zhang, 2020. "Forecasting emerging technologies using data augmentation and deep learning," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(1), pages 1-29, April.
    10. Robert R. Braam & Henk F. Moed & Anthony F. J. van Raan, 1991. "Mapping of science by combined co‐citation and word analysis. I. Structural aspects," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 42(4), pages 233-251, May.
    11. Ulrich Schmoch & Bernd Beckert & Petra Schaper-Rinkel, 2019. "Impact assessment of a support programme of science-based emerging technologies," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(3), pages 1141-1161, March.
    12. Petersen, Alexander M. & Rotolo, Daniele & Leydesdorff, Loet, 2016. "A triple helix model of medical innovation: Supply, demand, and technological capabilities in terms of Medical Subject Headings," Research Policy, Elsevier, vol. 45(3), pages 666-681.
    13. Jos J. Winnink & Robert J. W. Tijssen & Anthony F. J. van Raan, 2016. "Theory‐changing breakthroughs in science: The impact of research teamwork on scientific discoveries," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(5), pages 1210-1223, May.
    14. María José Martín-Sempere & Jesús Rey-Rocha & Belén Garzón-García, 2002. "The effect of team consolidation on research collaboration and performance of scientists. Case study of Spanish university researchers in Geology," Scientometrics, Springer;Akadémiai Kiadó, vol. 55(3), pages 377-394, November.
    15. Xu, Shuo & Hao, Liyuan & An, Xin & Yang, Guancan & Wang, Feifei, 2019. "Emerging research topics detection with multiple machine learning models," Journal of Informetrics, Elsevier, vol. 13(4).
    16. Yuan Zhou & Fang Dong & Yufei Liu & Liang Ran, 2021. "A deep learning framework to early identify emerging technologies in large-scale outlier patents: an empirical study of CNC machine tool," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 969-994, February.
    17. Blaise Cronin, 2001. "Hyperauthorship: A postmodern perversion or evidence of a structural shift in scholarly communication practices?," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 52(7), pages 558-569.
    18. Loet Leydesdorff & Daniele Rotolo & Ismael Rafols, 2012. "Bibliometric perspectives on medical innovation using the medical subject Headings of PubMed," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(11), pages 2239-2253, November.
    19. Robert R. Braam & Henk F. Moed & Anthony F. J. van Raan, 1991. "Mapping of science by combined co‐citation and word analysis. II: Dynamical aspects," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 42(4), pages 252-266, May.
    20. Yutao Sun & Cong Cao, 2020. "The dynamics of the studies of China’s science, technology and innovation (STI): a bibliometric analysis of an emerging field," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1335-1365, August.
    21. Qi Wang, 2018. "A bibliometric model for identifying emerging research topics," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 69(2), pages 290-304, February.
    22. Wolfgang Glänzel & Bart Thijs, 2012. "Using ‘core documents’ for detecting and labelling new emerging topics," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(2), pages 399-416, May.
    23. Ryosuke L. Ohniwa & Aiko Hibino & Kunio Takeyasu, 2010. "Trends in research foci in life science fields over the last 30 years monitored by emerging topics," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(1), pages 111-127, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuo Xu & Liyuan Hao & Xin An & Hongshen Pang & Ting Li, 2020. "Review on emerging research topics with key-route main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 607-624, January.
    2. Ryosuke L. Ohniwa & Aiko Hibino, 2019. "Generating process of emerging topics in the life sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1549-1561, December.
    3. Xu, Shuo & Hao, Liyuan & An, Xin & Yang, Guancan & Wang, Feifei, 2019. "Emerging research topics detection with multiple machine learning models," Journal of Informetrics, Elsevier, vol. 13(4).
    4. Lu, Kun & Yang, Guancan & Wang, Xue, 2022. "Topics emerged in the biomedical field and their characteristics," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    5. Kwon, Seokbeom & Liu, Xiaoyu & Porter, Alan L. & Youtie, Jan, 2019. "Research addressing emerging technological ideas has greater scientific impact," Research Policy, Elsevier, vol. 48(9), pages 1-1.
    6. Xu, Shuo & Hao, Liyuan & Yang, Guancan & Lu, Kun & An, Xin, 2021. "A topic models based framework for detecting and forecasting emerging technologies," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    7. Wooseok Jang & Yongtae Park & Hyeonju Seol, 2021. "Identifying emerging technologies using expert opinions on the future: A topic modeling and fuzzy clustering approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6505-6532, August.
    8. Xu, Haiyun & Winnink, Jos & Yue, Zenghui & Zhang, Huiling & Pang, Hongshen, 2021. "Multidimensional Scientometric indicators for the detection of emerging research topics," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    9. Jiang, Man & Yang, Siluo & Gao, Qiang, 2024. "Multidimensional indicators to identify emerging technologies: Perspective of technological knowledge flow," Journal of Informetrics, Elsevier, vol. 18(1).
    10. Gao, Qiang & Liang, Zhentao & Wang, Ping & Hou, Jingrui & Chen, Xiuxiu & Liu, Manman, 2021. "Potential index: Revealing the future impact of research topics based on current knowledge networks," Journal of Informetrics, Elsevier, vol. 15(3).
    11. Rotolo, Daniele & Hicks, Diana & Martin, Ben R., 2015. "What is an emerging technology?," Research Policy, Elsevier, vol. 44(10), pages 1827-1843.
    12. Huang, Lu & Chen, Xiang & Ni, Xingxing & Liu, Jiarun & Cao, Xiaoli & Wang, Changtian, 2021. "Tracking the dynamics of co-word networks for emerging topic identification," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    13. Zhenyu Yang & Wenyu Zhang & Zhimin Wang & Xiaoling Huang, 2024. "A deep learning-based method for predicting the emerging degree of research topics using emerging index," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(7), pages 4021-4042, July.
    14. Zamani, Mehdi & Yalcin, Haydar & Naeini, Ali Bonyadi & Zeba, Gordana & Daim, Tugrul U, 2022. "Developing metrics for emerging technologies: identification and assessment," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    15. Bornmann, Lutz & Haunschild, Robin, 2022. "Empirical analysis of recent temporal dynamics of research fields: Annual publications in chemistry and related areas as an example," Journal of Informetrics, Elsevier, vol. 16(2).
    16. Chaker Jebari & Enrique Herrera-Viedma & Manuel Jesus Cobo, 2021. "The use of citation context to detect the evolution of research topics: a large-scale analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 2971-2989, April.
    17. Zhang, Yi & Wu, Mengjia & Miao, Wen & Huang, Lu & Lu, Jie, 2021. "Bi-layer network analytics: A methodology for characterizing emerging general-purpose technologies," Journal of Informetrics, Elsevier, vol. 15(4).
    18. Ante, Lennart, 2022. "The relationship between readability and scientific impact: Evidence from emerging technology discourses," Journal of Informetrics, Elsevier, vol. 16(1).
    19. Petersen, Alexander M. & Rotolo, Daniele & Leydesdorff, Loet, 2016. "A triple helix model of medical innovation: Supply, demand, and technological capabilities in terms of Medical Subject Headings," Research Policy, Elsevier, vol. 45(3), pages 666-681.
    20. Ciro D. Esposito & Balazs Szatmari & Jonathan M. C. Sitruk & Nachoem M. Wijnberg, 2024. "Getting off to a good start: emerging academic fields and early-stage equity financing," Small Business Economics, Springer, vol. 62(4), pages 1591-1613, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:127:y:2022:i:2:d:10.1007_s11192-021-04233-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.