IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v82y2012i7p1346-1351.html
   My bibliography  Save this article

A simplified representation of the covariance structure of axially symmetric processes on the sphere

Author

Listed:
  • Huang, Chunfeng
  • Zhang, Haimeng
  • Robeson, Scott M.

Abstract

Spatial processes having covariance functions that depend solely on the distance between locations are known as homogeneous. Many random processes on the sphere are not homogeneous, especially in the latitudinal dimension. As a result, we study a class of statistical processes that exhibit axial symmetry, whereby their covariance function depends on differences in longitude alone. We develop a new and simplified representation for a valid axially symmetric process, reducing computational complexity considerably. In addition, we explore longitudinally reversible processes and the construction of parametric models for axially symmetric processes.

Suggested Citation

  • Huang, Chunfeng & Zhang, Haimeng & Robeson, Scott M., 2012. "A simplified representation of the covariance structure of axially symmetric processes on the sphere," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1346-1351.
  • Handle: RePEc:eee:stapro:v:82:y:2012:i:7:p:1346-1351
    DOI: 10.1016/j.spl.2012.03.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715212001083
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2012.03.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wood, Andrew T. A., 1995. "When is a truncated covariance function on the line a covariance function on the circle?," Statistics & Probability Letters, Elsevier, vol. 24(2), pages 157-164, August.
    2. Noel Cressie & Gardar Johannesson, 2008. "Fixed rank kriging for very large spatial data sets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 209-226, February.
    3. Ta-Hsin Li & Gerald North, 1997. "Aliasing Effects and Sampling Theorems of Spherical Random Fields when Sampled on a Finite Grid," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 49(2), pages 341-354, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefano Castruccio & Joseph Guinness, 2017. "An evolutionary spectrum approach to incorporate large-scale geographical descriptors on global processes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(2), pages 329-344, February.
    2. Arafat, Ahmed & Porcu, Emilio & Bevilacqua, Moreno & Mateu, Jorge, 2018. "Equivalence and orthogonality of Gaussian measures on spheres," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 306-318.
    3. Huang, Chunfeng & Zhang, Haimeng & Robeson, Scott M. & Shields, Jacob, 2019. "Intrinsic random functions on the sphere," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 7-14.
    4. Lan, Xiaohong & Xiao, Yimin, 2018. "Strong local nondeterminism of spherical fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 135(C), pages 44-50.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. K. Shuvo Bakar & Nicholas Biddle & Philip Kokic & Huidong Jin, 2020. "A Bayesian spatial categorical model for prediction to overlapping geographical areas in sample surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 535-563, February.
    2. Hendriks, Harrie, 2003. "Application of fast spherical Fourier transform to density estimation," Journal of Multivariate Analysis, Elsevier, vol. 84(2), pages 209-221, February.
    3. Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
    4. Caamaño-Carrillo, Christian & Bevilacqua, Moreno & López, Cristian & Morales-Oñate, Víctor, 2024. "Nearest neighbors weighted composite likelihood based on pairs for (non-)Gaussian massive spatial data with an application to Tukey-hh random fields estimation," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).
    5. Jonathan R. Bradley & Christopher K. Wikle & Scott H. Holan, 2017. "Regionalization of multiscale spatial processes by using a criterion for spatial aggregation error," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 815-832, June.
    6. Huang, Chunfeng & Li, Ao, 2021. "On Lévy’s Brownian motion and white noise space on the circle," Statistics & Probability Letters, Elsevier, vol. 171(C).
    7. Sierra Pugh & Matthew J. Heaton & Jeff Svedin & Neil Hansen, 2019. "Spatiotemporal Lagged Models for Variable Rate Irrigation in Agriculture," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(4), pages 634-650, December.
    8. Marchetti, Yuliya & Nguyen, Hai & Braverman, Amy & Cressie, Noel, 2018. "Spatial data compression via adaptive dispersion clustering," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 138-153.
    9. Kenneth K. Lopiano & Linda J. Young & Carol A. Gotway, 2014. "A pseudo-penalized quasi-likelihood approach to the spatial misalignment problem with non-normal data," Biometrics, The International Biometric Society, vol. 70(3), pages 648-660, September.
    10. Sameh Abdulah & Yuxiao Li & Jian Cao & Hatem Ltaief & David E. Keyes & Marc G. Genton & Ying Sun, 2023. "Large‐scale environmental data science with ExaGeoStatR," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
    11. Mahdi Hosseinpouri & Majid Jafari Khaledi, 2019. "An area-specific stick breaking process for spatial data," Statistical Papers, Springer, vol. 60(1), pages 199-221, February.
    12. Li, Yang & Zhu, Zhengyuan, 2016. "Modeling nonstationary covariance function with convolution on sphere," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 233-246.
    13. Huang Huang & Sameh Abdulah & Ying Sun & Hatem Ltaief & David E. Keyes & Marc G. Genton, 2021. "Competition on Spatial Statistics for Large Datasets," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(4), pages 580-595, December.
    14. Morales-Oñate, Víctor & Crudu, Federico & Bevilacqua, Moreno, 2021. "Blockwise Euclidean likelihood for spatio-temporal covariance models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 176-201.
    15. Si Cheng & Bledar A. Konomi & Georgios Karagiannis & Emily L. Kang, 2024. "Recursive nearest neighbor co‐kriging models for big multi‐fidelity spatial data sets," Environmetrics, John Wiley & Sons, Ltd., vol. 35(4), June.
    16. Ashton Wiens & Douglas Nychka & William Kleiber, 2020. "Modeling spatial data using local likelihood estimation and a Matérn to spatial autoregressive translation," Environmetrics, John Wiley & Sons, Ltd., vol. 31(6), September.
    17. Jialuo Liu & Tingjin Chu & Jun Zhu & Haonan Wang, 2022. "Large spatial data modeling and analysis: A Krylov subspace approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1115-1143, September.
    18. Zahra Barzegar & Firoozeh Rivaz, 2020. "A scalable Bayesian nonparametric model for large spatio-temporal data," Computational Statistics, Springer, vol. 35(1), pages 153-173, March.
    19. Matthew Plumlee, 2014. "Fast Prediction of Deterministic Functions Using Sparse Grid Experimental Designs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1581-1591, December.
    20. Candace Berrett & William F. Christensen & Stephan R. Sain & Nathan Sandholtz & David W. Coats & Claudia Tebaldi & Hedibert F. Lopes, 2020. "Modeling sea‐level processes on the U.S. Atlantic Coast," Environmetrics, John Wiley & Sons, Ltd., vol. 31(4), June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:82:y:2012:i:7:p:1346-1351. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.