IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v66y2017i2p329-344.html
   My bibliography  Save this article

An evolutionary spectrum approach to incorporate large-scale geographical descriptors on global processes

Author

Listed:
  • Stefano Castruccio
  • Joseph Guinness

Abstract

No abstract is available for this item.

Suggested Citation

  • Stefano Castruccio & Joseph Guinness, 2017. "An evolutionary spectrum approach to incorporate large-scale geographical descriptors on global processes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(2), pages 329-344, February.
  • Handle: RePEc:bla:jorssc:v:66:y:2017:i:2:p:329-344
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/rssc.12167
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrew Poppick & Michael L. Stein, 2014. "Using covariates to model dependence in nonstationary, high‐frequency meteorological processes," Environmetrics, John Wiley & Sons, Ltd., vol. 25(5), pages 293-305, August.
    2. Andrew Poppick & Michael L. Stein, 2014. "Erratum: Using covariates to model dependence in nonstationary, high frequency meteorological processes," Environmetrics, John Wiley & Sons, Ltd., vol. 25(7), pages 557-557, November.
    3. Huang, Chunfeng & Zhang, Haimeng & Robeson, Scott M., 2012. "A simplified representation of the covariance structure of axially symmetric processes on the sphere," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1346-1351.
    4. K. Sham Bhat & Murali Haran & Roman Olson & Klaus Keller, 2012. "Inferring likelihoods and climate system characteristics from climate models and multiple tracers," Environmetrics, John Wiley & Sons, Ltd., vol. 23(4), pages 345-362, June.
    5. Joseph Guinness & Michael L. Stein, 2013. "Transformation to approximate independence for locally stationary Gaussian processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(5), pages 574-590, September.
    6. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    7. Jun, Mikyoung & Knutti, Reto & Nychka, Douglas W, 2008. "Spatial Analysis to Quantify Numerical Model Bias and Dependence," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 934-947.
    8. Finn Lindgren & Håvard Rue & Johan Lindström, 2011. "An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(4), pages 423-498, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang Huang & Stefano Castruccio & Allison H. Baker & Marc G. Genton, 2023. "Saving Storage in Climate Ensembles: A Model-Based Stochastic Approach," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(2), pages 324-344, June.
    2. Edwards, Matthew & Castruccio, Stefano & Hammerling, Dorit, 2020. "Marginally parameterized spatio-temporal models and stepwise maximum likelihood estimation," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
    3. Arafat, Ahmed & Porcu, Emilio & Bevilacqua, Moreno & Mateu, Jorge, 2018. "Equivalence and orthogonality of Gaussian measures on spheres," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 306-318.
    4. Castruccio, Stefano & Genton, Marc G., 2018. "Principles for statistical inference on big spatio-temporal data from climate models," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 92-96.
    5. Matthew Edwards & Stefano Castruccio & Dorit Hammerling, 2019. "A Multivariate Global Spatiotemporal Stochastic Generator for Climate Ensembles," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 464-483, September.
    6. Brian J. Reich & Joseph Guinness & Simon N. Vandekar & Russell T. Shinohara & Ana†Maria Staicu, 2018. "Fully Bayesian spectral methods for imaging data," Biometrics, The International Biometric Society, vol. 74(2), pages 645-652, June.
    7. Mikkel Bennedsen & Eric Hillebrand & Siem Jan Koopman, 2020. "A statistical model of the global carbon budget," CREATES Research Papers 2020-18, Department of Economics and Business Economics, Aarhus University.
    8. Guella, Jean Carlo & Menegatto, Valdir Antonio & Porcu, Emilio, 2018. "Strictly positive definite multivariate covariance functions on spheres," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 150-159.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edwards, Matthew & Castruccio, Stefano & Hammerling, Dorit, 2020. "Marginally parameterized spatio-temporal models and stepwise maximum likelihood estimation," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
    2. Kleiber, William & Nychka, Douglas, 2012. "Nonstationary modeling for multivariate spatial processes," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 76-91.
    3. Castruccio, Stefano & Genton, Marc G., 2018. "Principles for statistical inference on big spatio-temporal data from climate models," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 92-96.
    4. Rajala, T. & Penttinen, A., 2014. "Bayesian analysis of a Gibbs hard-core point pattern model with varying repulsion range," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 530-541.
    5. K. Shuvo Bakar & Nicholas Biddle & Philip Kokic & Huidong Jin, 2020. "A Bayesian spatial categorical model for prediction to overlapping geographical areas in sample surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 535-563, February.
    6. Laura M. Sangalli, 2021. "Spatial Regression With Partial Differential Equation Regularisation," International Statistical Review, International Statistical Institute, vol. 89(3), pages 505-531, December.
    7. Roberto Roson & Richard Damania, the World Bank, Washington D.C., 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity," EcoMod2016 9167, EcoMod.
    8. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    9. Voisin, Nathalie & Dyreson, Ana & Fu, Tao & O'Connell, Matt & Turner, Sean W.D. & Zhou, Tian & Macknick, Jordan, 2020. "Impact of climate change on water availability and its propagation through the Western U.S. power grid," Applied Energy, Elsevier, vol. 276(C).
    10. Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
    11. William Kleiber & Stephan Sain & Luke Madaus & Patrick Harr, 2023. "Stochastic tropical cyclone precipitation field generation," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
    12. G. Cornelis van Kooten & Mark E. Eiswerth & Jonathon Izett & Alyssa R. Russell, 2021. "Climate Change and the Social Cost of Carbon: DICE Explained and Expanded," Working Papers 2021-01, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    13. Finn Lindgren, 2015. "Comments on: Comparing and selecting spatial predictors using local criteria," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 35-44, March.
    14. Carson, Stuart & Mills Flemming, Joanna, 2014. "Seal encounters at sea: A contemporary spatial approach using R-INLA," Ecological Modelling, Elsevier, vol. 291(C), pages 175-181.
    15. Fraga, H. & García de Cortázar Atauri, I. & Santos, J.A, 2018. "Viticultural irrigation demands under climate change scenarios in Portugal," Agricultural Water Management, Elsevier, vol. 196(C), pages 66-74.
    16. Chen, Yewen & Chang, Xiaohui & Luo, Fangzhi & Huang, Hui, 2023. "Additive dynamic models for correcting numerical model outputs," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    17. Sulin Tao & Shuanghe Shen & Yuhong Li & Qi Wang & Ping Gao & Isaac Mugume, 2016. "Projected Crop Production under Regional Climate Change Using Scenario Data and Modeling: Sensitivity to Chosen Sowing Date and Cultivar," Sustainability, MDPI, vol. 8(3), pages 1-23, February.
    18. Zilber, Daniel & Katzfuss, Matthias, 2021. "Vecchia–Laplace approximations of generalized Gaussian processes for big non-Gaussian spatial data," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    19. Cristina Cattaneo & Emanuele Massetti, 2019. "Does Harmful Climate Increase Or Decrease Migration? Evidence From Rural Households In Nigeria," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 1-36, November.
    20. Pascalle Smith & Georg Heinrich & Martin Suklitsch & Andreas Gobiet & Markus Stoffel & Jürg Fuhrer, 2014. "Station-scale bias correction and uncertainty analysis for the estimation of irrigation water requirements in the Swiss Rhone catchment under climate change," Climatic Change, Springer, vol. 127(3), pages 521-534, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:66:y:2017:i:2:p:329-344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.