IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v102y2011i3p661-673.html
   My bibliography  Save this article

Blockwise empirical likelihood for time series of counts

Author

Listed:
  • Wu, Rongning
  • Cao, Jiguo

Abstract

Time series of counts have a wide variety of applications in real life. Analyzing time series of counts requires accommodations for serial dependence, discreteness, and overdispersion of data. In this paper, we extend blockwise empirical likelihood (Kitamura, 1997 [15]) to the analysis of time series of counts under a regression setting. In particular, our contribution is the extension of Kitamura's (1997) [15] method to the analysis of nonstationary time series. Serial dependence among observations is treated nonparametrically using a blocking technique; and overdispersion in count data is accommodated by the specification of a variance-mean relationship. We establish consistency and asymptotic normality of the maximum blockwise empirical likelihood estimator. Simulation studies show that our method has a good finite sample performance. The method is also illustrated by analyzing two real data sets: monthly counts of poliomyelitis cases in the USA and daily counts of non-accidental deaths in Toronto, Canada.

Suggested Citation

  • Wu, Rongning & Cao, Jiguo, 2011. "Blockwise empirical likelihood for time series of counts," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 661-673, March.
  • Handle: RePEc:eee:jmvana:v:102:y:2011:i:3:p:661-673
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(10)00238-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Francesco Bravo, 2009. "Blockwise generalized empirical likelihood inference for non-linear dynamic moment conditions models," Econometrics Journal, Royal Economic Society, vol. 12(2), pages 208-231, July.
    2. Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984. "Pseudo Maximum Likelihood Methods: Applications to Poisson Models," Econometrica, Econometric Society, vol. 52(3), pages 701-720, May.
    3. Daniel J. Nordman & Philipp Sibbertsen & Soumendra N. Lahiri, 2007. "Empirical likelihood confidence intervals for the mean of a long‐range dependent process," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(4), pages 576-599, July.
    4. de Jong, R.M., 1995. "Laws of Large Numbers for Dependent Heterogeneous Processes," Econometric Theory, Cambridge University Press, vol. 11(2), pages 347-358, February.
    5. Richard A. Davis & Rongning Wu, 2009. "A negative binomial model for time series of counts," Biometrika, Biometrika Trust, vol. 96(3), pages 735-749.
    6. Davidson, James, 1992. "A Central Limit Theorem for Globally Nonstationary Near-Epoch Dependent Functions of Mixing Processes," Econometric Theory, Cambridge University Press, vol. 8(3), pages 313-329, September.
    7. Chan, Ngai Hang & Ling, Shiqing, 2006. "Empirical Likelihood For Garch Models," Econometric Theory, Cambridge University Press, vol. 22(3), pages 403-428, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel J. Nordman & Helle Bunzel & Soumendra N. Lahiri, 2012. "A Non-standard Empirical Likelihood for Time Series," CREATES Research Papers 2012-55, Department of Economics and Business Economics, Aarhus University.
    2. Feifan Jiang & Lihong Wang, 2018. "Adjusted blockwise empirical likelihood for long memory time series models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 319-332, June.
    3. Wu, Rongning, 2012. "On variance estimation in a negative binomial time series regression model," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 145-155.
    4. Chioneso S. Marange & Yongsong Qin & Raymond T. Chiruka & Jesca M. Batidzirai, 2023. "A Blockwise Empirical Likelihood Test for Gaussianity in Stationary Autoregressive Processes," Mathematics, MDPI, vol. 11(4), pages 1-20, February.
    5. Šárka Hudecová & Marie Hušková & Simos G. Meintanis, 2017. "Tests for Structural Changes in Time Series of Counts," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 843-865, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vasiliki Christou & Konstantinos Fokianos, 2014. "Quasi-Likelihood Inference For Negative Binomial Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(1), pages 55-78, January.
    2. Feifan Jiang & Lihong Wang, 2018. "Adjusted blockwise empirical likelihood for long memory time series models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 319-332, June.
    3. Li, Minqiang & Peng, Liang & Qi, Yongcheng, 2011. "Reduce computation in profile empirical likelihood method," MPRA Paper 33744, University Library of Munich, Germany.
    4. William Dunsmuir & Jieyi He, 2017. "Marginal Estimation of Parameter Driven Binomial Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(1), pages 120-144, January.
    5. Shang, Zuofeng, 2012. "On latent process models in multi-dimensional space," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1259-1266.
    6. Blasques, Francisco & van Brummelen, Janneke & Koopman, Siem Jan & Lucas, André, 2022. "Maximum likelihood estimation for score-driven models," Journal of Econometrics, Elsevier, vol. 227(2), pages 325-346.
    7. Aknouche, Abdelhakim & Bendjeddou, Sara, 2016. "Negative binomial quasi-likelihood inference for general integer-valued time series models," MPRA Paper 76574, University Library of Munich, Germany, revised 03 Feb 2017.
    8. Ting Fung Ma & Fangfang Wang & Jun Zhu, 2023. "On generalized latent factor modeling and inference for high‐dimensional binomial data," Biometrics, The International Biometric Society, vol. 79(3), pages 2311-2320, September.
    9. Blais, Michel & MacGibbon, Brenda & Roy, Roch, 2000. "Limit theorems for regression models of time series of counts," Statistics & Probability Letters, Elsevier, vol. 46(2), pages 161-168, January.
    10. Chioneso S. Marange & Yongsong Qin & Raymond T. Chiruka & Jesca M. Batidzirai, 2023. "A Blockwise Empirical Likelihood Test for Gaussianity in Stationary Autoregressive Processes," Mathematics, MDPI, vol. 11(4), pages 1-20, February.
    11. Gong, Yun & Peng, Liang & Qi, Yongcheng, 2010. "Smoothed jackknife empirical likelihood method for ROC curve," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1520-1531, July.
    12. Gianfranco Adimari & Annamaria Guolo, 2010. "A note on the asymptotic behaviour of empirical likelihood statistics," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 19(4), pages 463-476, November.
    13. Rongning Wu & Yunwei Cui, 2014. "A Parameter-Driven Logit Regression Model For Binary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(5), pages 462-477, August.
    14. Anthony Briant & Pierre-Philippe Combes & Miren Lafourcade, 2014. "Product Complexity, Quality of Institutions and the Protrade Effect of Immigrants," The World Economy, Wiley Blackwell, vol. 37(1), pages 63-85, January.
    15. Giuliani, Elisa & Martinelli, Arianna & Rabellotti, Roberta, 2016. "Is Co-Invention Expediting Technological Catch Up? A Study of Collaboration between Emerging Country Firms and EU Inventors," World Development, Elsevier, vol. 77(C), pages 192-205.
    16. Bettina Becker & Martin Theuringer, 2000. "Macroeconomic Determinants of Contingent Protection: The Case of the European Union," IWP Discussion Paper Series 02/2000, Institute for Economic Policy, Cologne, Germany.
    17. Dennis, Allen & Shepherd, Ben, 2007. "Trade costs, barriers to entry, and export diversification in developing countries," Policy Research Working Paper Series 4368, The World Bank.
    18. Yang Lu, 2019. "Flexible (panel) regression models for bivariate count–continuous data with an insurance application," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1503-1521, October.
    19. de Rassenfosse, Gaétan, 2013. "Do firms face a trade-off between the quantity and the quality of their inventions?," Research Policy, Elsevier, vol. 42(5), pages 1072-1079.
    20. Hallin, Marc & La Vecchia, Davide, 2020. "A Simple R-estimation method for semiparametric duration models," Journal of Econometrics, Elsevier, vol. 218(2), pages 736-749.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:102:y:2011:i:3:p:661-673. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.