IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v56y2000i3p922-935.html
   My bibliography  Save this article

Bayesian Detection and Modeling of Spatial Disease Clustering

Author

Listed:
  • Ronald E. Gangnon
  • Murray K. Clayton

Abstract

No abstract is available for this item.

Suggested Citation

  • Ronald E. Gangnon & Murray K. Clayton, 2000. "Bayesian Detection and Modeling of Spatial Disease Clustering," Biometrics, The International Biometric Society, vol. 56(3), pages 922-935, September.
  • Handle: RePEc:bla:biomet:v:56:y:2000:i:3:p:922-935
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.0006-341X.2000.00922.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter J. Diggle, 1990. "A Point Process Modelling Approach to Raised Incidence of a Rare Phenomenon in the Vicinity of a Prespecified Point," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 153(3), pages 349-362, May.
    2. Julian Besag & James Newell, 1991. "The Detection of Clusters in Rare Diseases," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 154(1), pages 143-155, January.
    3. Selvin, S. & Schulman, J. & Merrill, D. W., 1992. "Distance and risk measures for the analysis of spatial data: A study of childhood cancers," Social Science & Medicine, Elsevier, vol. 34(7), pages 769-777, April.
    4. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dayton M. Lambert & Kevin T. McNamara, 2009. "Location determinants of food manufacturers in the United States, 2000–2004: are nonmetropolitan counties competitive?," Agricultural Economics, International Association of Agricultural Economists, vol. 40(6), pages 617-630, November.
    2. K C Flórez & A Corberán-Vallet & A Iftimi & J D Bermúdez, 2020. "A Bayesian unified framework for risk estimation and cluster identification in small area health data analysis," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-17, May.
    3. Sam Hui & Eric Bradlow, 2012. "Bayesian multi-resolution spatial analysis with applications to marketing," Quantitative Marketing and Economics (QME), Springer, vol. 10(4), pages 419-452, December.
    4. Minge Xie & Qiankun Sun & Joseph Naus, 2009. "A Latent Model to Detect Multiple Clusters of Varying Sizes," Biometrics, The International Biometric Society, vol. 65(4), pages 1011-1020, December.
    5. Shang, Zuofeng, 2012. "On latent process models in multi-dimensional space," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1259-1266.
    6. Junho Lee & Ying Sun & Huixia Judy Wang, 2021. "Spatial cluster detection with threshold quantile regression," Environmetrics, John Wiley & Sons, Ltd., vol. 32(8), December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hossain, Md. Monir & Lawson, Andrew B., 2009. "Approximate methods in Bayesian point process spatial models," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2831-2842, June.
    2. Álvaro Briz‐Redón & Jorge Mateu & Francisco Montes, 2022. "Identifying crime generators and spatially overlapping high‐risk areas through a nonlinear model: A comparison between three cities of the Valencian region (Spain)," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(1), pages 97-120, February.
    3. Peter Congdon, 2000. "Monitoring Suicide Mortality: A Bayesian Approach," European Journal of Population, Springer;European Association for Population Studies, vol. 16(3), pages 251-284, September.
    4. Peter Congdon, 1997. "Multilevel and Clustering Analysis of Health Outcomes in Small Areas," European Journal of Population, Springer;European Association for Population Studies, vol. 13(4), pages 305-338, December.
    5. Hosik Choi & Eunjung Song & Seung-sik Hwang & Woojoo Lee, 2018. "A modified generalized lasso algorithm to detect local spatial clusters for count data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(4), pages 537-563, October.
    6. Marvin M. Smith & Tony E. Smith & John Wackes, 2007. "Alternative financial service providers and the spatial void hypothesis," Community Affairs Discussion Paper 07-01, Federal Reserve Bank of Philadelphia.
    7. Vinícius Diniz Mayrink & Renato Valladares Panaro & Marcelo Azevedo Costa, 2021. "Structural equation modeling with time dependence: an application comparing Brazilian energy distributors," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(2), pages 353-383, June.
    8. Katherine Wilson & Jon Wakefield, 2022. "A probabilistic model for analyzing summary birth history data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 47(11), pages 291-344.
    9. Thomas C. McHale & Claudia M. Romero-Vivas & Claudio Fronterre & Pedro Arango-Padilla & Naomi R. Waterlow & Chad D. Nix & Andrew K. Falconar & Jorge Cano, 2019. "Spatiotemporal Heterogeneity in the Distribution of Chikungunya and Zika Virus Case Incidences during their 2014 to 2016 Epidemics in Barranquilla, Colombia," IJERPH, MDPI, vol. 16(10), pages 1-21, May.
    10. Peter Congdon, 2010. "A multiple indicator, multiple cause method for representing social capital with an application to psychological distress," Journal of Geographical Systems, Springer, vol. 12(1), pages 1-23, March.
    11. Renato Assunção & Carl Schmertmann & Joseph Potter & Suzana Cavenaghi, 2005. "Empirical bayes estimation of demographic schedules for small areas," Demography, Springer;Population Association of America (PAA), vol. 42(3), pages 537-558, August.
    12. Peter Congdon, 2014. "Estimating life expectancies for US small areas: a regression framework," Journal of Geographical Systems, Springer, vol. 16(1), pages 1-18, January.
    13. Alexandre Rodrigues & Peter Diggle & Renato Assuncao, 2010. "Semiparametric approach to point source modelling in epidemiology and criminology," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(3), pages 533-542, May.
    14. Eibich, Peter & Ziebarth, Nicolas, 2014. "Examining the Structure of Spatial Health Effects in Germany Using Hierarchical Bayes Models," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 49, pages 305-320.
    15. Chen, Yewen & Chang, Xiaohui & Luo, Fangzhi & Huang, Hui, 2023. "Additive dynamic models for correcting numerical model outputs," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    16. Dani Gamerman & Ajax R. B. Moreira, 2015. "Multivariate Spatial Regression Models," Discussion Papers 0116, Instituto de Pesquisa Econômica Aplicada - IPEA.
    17. Jamie M. Madden & Simon More & Conor Teljeur & Justin Gleeson & Cathal Walsh & Guy McGrath, 2021. "Population Mobility Trends, Deprivation Index and the Spatio-Temporal Spread of Coronavirus Disease 2019 in Ireland," IJERPH, MDPI, vol. 18(12), pages 1-16, June.
    18. Zhang, Tonglin & Lin, Ge, 2016. "On Moran’s I coefficient under heterogeneity," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 83-94.
    19. Peter Congdon, 2020. "Geographical Aspects of Recent Trends in Drug-Related Deaths, with a Focus on Intra-National Contextual Variation," IJERPH, MDPI, vol. 17(21), pages 1-18, November.
    20. Maciej Beręsewicz & Dagmara Nikulin, 2018. "Informal employment in Poland: an empirical spatial analysis," Spatial Economic Analysis, Taylor & Francis Journals, vol. 13(3), pages 338-355, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:56:y:2000:i:3:p:922-935. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.