IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v125y2015i11p4021-4038.html
   My bibliography  Save this article

Limit theorems and governing equations for Lévy walks

Author

Listed:
  • Magdziarz, M.
  • Scheffler, H.P.
  • Straka, P.
  • Zebrowski, P.

Abstract

The Lévy Walk is the process with continuous sample paths which arises from consecutive linear motions of i.i.d. lengths with i.i.d. directions. Assuming speed 1 and motions in the domain of β-stable attraction, we prove functional limit theorems and derive governing pseudo-differential equations for the law of the walker’s position. Both Lévy Walk and its limit process are continuous and ballistic in the case β∈(0,1). In the case β∈(1,2), the scaling limit of the process is β-stable and hence discontinuous. This result is surprising, because the scaling exponent 1/β on the process level is seemingly unrelated to the scaling exponent 3−β of the second moment. For β=2, the scaling limit is Brownian motion.

Suggested Citation

  • Magdziarz, M. & Scheffler, H.P. & Straka, P. & Zebrowski, P., 2015. "Limit theorems and governing equations for Lévy walks," Stochastic Processes and their Applications, Elsevier, vol. 125(11), pages 4021-4038.
  • Handle: RePEc:eee:spapps:v:125:y:2015:i:11:p:4021-4038
    DOI: 10.1016/j.spa.2015.05.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414915001362
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2015.05.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Klafter, J. & Blumen, A. & Zumofen, G. & Shlesinger, M.F., 1990. "Lévy walk approach to anomalous diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 168(1), pages 637-645.
    2. Meerschaert, Mark M. & Scheffler, Hans-Peter, 2008. "Triangular array limits for continuous time random walks," Stochastic Processes and their Applications, Elsevier, vol. 118(9), pages 1606-1633, September.
    3. Marek Teuerle & Piotr Zebrowski & Marcin Magdziarz, 2011. "Multidimensional Levy walk and its scaling limits," HSC Research Reports HSC/11/06, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    4. Straka, P. & Henry, B.I., 2011. "Lagging and leading coupled continuous time random walks, renewal times and their joint limits," Stochastic Processes and their Applications, Elsevier, vol. 121(2), pages 324-336, February.
    5. Dybiec, Bartłomiej, 2008. "Random strategies of contact tracking," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(19), pages 4863-4870.
    6. D. Brockmann & L. Hufnagel & T. Geisel, 2006. "The scaling laws of human travel," Nature, Nature, vol. 439(7075), pages 462-465, January.
    7. Mark Buchanan, 2008. "Ecological modelling: The mathematical mirror to animal nature," Nature, Nature, vol. 453(7196), pages 714-716, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peggy Cénac & Arnaud Ny & Basile Loynes & Yoann Offret, 2019. "Persistent Random Walks. II. Functional Scaling Limits," Journal of Theoretical Probability, Springer, vol. 32(2), pages 633-658, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meerschaert, Mark M. & Nane, Erkan & Xiao, Yimin, 2013. "Fractal dimension results for continuous time random walks," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1083-1093.
    2. Beghin, Luisa & Macci, Claudio & Ricciuti, Costantino, 2020. "Random time-change with inverses of multivariate subordinators: Governing equations and fractional dynamics," Stochastic Processes and their Applications, Elsevier, vol. 130(10), pages 6364-6387.
    3. Barczyk, A. & Kern, P., 2013. "Scaling limits of coupled continuous time random walks and residual order statistics through marked point processes," Stochastic Processes and their Applications, Elsevier, vol. 123(3), pages 796-812.
    4. Ferreira, A.S. & Raposo, E.P. & Viswanathan, G.M. & da Luz, M.G.E., 2012. "The influence of the environment on Lévy random search efficiency: Fractality and memory effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3234-3246.
    5. Vassili N. Kolokoltsov, 2023. "Fractional Equations for the Scaling Limits of Lévy Walks with Position-Dependent Jump Distributions," Mathematics, MDPI, vol. 11(11), pages 1-19, June.
    6. Miguel Picornell & Tomás Ruiz & Maxime Lenormand & José Ramasco & Thibaut Dubernet & Enrique Frías-Martínez, 2015. "Exploring the potential of phone call data to characterize the relationship between social network and travel behavior," Transportation, Springer, vol. 42(4), pages 647-668, July.
    7. Moshe B Hoshen & Anthony H Burton & Themis J V Bowcock, 2007. "Simulating disease transmission dynamics at a multi-scale level," International Journal of Microsimulation, International Microsimulation Association, vol. 1(1), pages 26-34.
    8. Maxime Lenormand & Miguel Picornell & Oliva G Cantú-Ros & Antònia Tugores & Thomas Louail & Ricardo Herranz & Marc Barthelemy & Enrique Frías-Martínez & José J Ramasco, 2014. "Cross-Checking Different Sources of Mobility Information," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-10, August.
    9. Huang, Feihu & Qiao, Shaojie & Peng, Jian & Guo, Bing & Xiong, Xi & Han, Nan, 2019. "A movement model for air passengers based on trip purpose," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 798-808.
    10. Shanshan Wan & Zhuo Chen & Cheng Lyu & Ruofan Li & Yuntao Yue & Ying Liu, 2022. "Research on disaster information dissemination based on social sensor networks," International Journal of Distributed Sensor Networks, , vol. 18(3), pages 15501329221, March.
    11. Fernandez-Anaya, G. & Valdes-Parada, F.J. & Alvarez-Ramirez, J., 2011. "On generalized fractional Cattaneo’s equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4198-4202.
    12. Varga, Levente & Tóth, Géza & Néda, Zoltán, 2017. "An improved radiation model and its applicability for understanding commuting patterns in Hungary," MPRA Paper 76806, University Library of Munich, Germany.
    13. P. Escalona & F. Ordóñez & I. Kauak, 2017. "Critical level rationing in inventory systems with continuously distributed demand," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 273-301, January.
    14. Kelbert, M. & Konakov, V. & Menozzi, S., 2016. "Weak error for Continuous Time Markov Chains related to fractional in time P(I)DEs," Stochastic Processes and their Applications, Elsevier, vol. 126(4), pages 1145-1183.
    15. Kumar, A. & Vellaisamy, P., 2015. "Inverse tempered stable subordinators," Statistics & Probability Letters, Elsevier, vol. 103(C), pages 134-141.
    16. Chaogui Kang & Yu Liu & Diansheng Guo & Kun Qin, 2015. "A Generalized Radiation Model for Human Mobility: Spatial Scale, Searching Direction and Trip Constraint," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-11, November.
    17. Medino, Ary V. & Lopes, Sílvia R.C. & Morgado, Rafael & Dorea, Chang C.Y., 2012. "Generalized Langevin equation driven by Lévy processes: A probabilistic, numerical and time series based approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 572-581.
    18. Li, Ze-Tao & Nie, Wei-Peng & Cai, Shi-Min & Zhao, Zhi-Dan & Zhou, Tao, 2023. "Exploring the topological characteristics of urban trip networks based on taxi trajectory data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    19. Liu, Jian-Guo & Li, Ren-De & Guo, Qiang & Zhang, Yi-Cheng, 2018. "Collective iteration behavior for online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 490-497.
    20. Bilazeroğlu, Ş. & Göktepe, S. & Merdan, H., 2023. "Effects of the random walk and the maturation period in a diffusive predator–prey system with two discrete delays," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:125:y:2015:i:11:p:4021-4038. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.