IDEAS home Printed from https://ideas.repec.org/a/spr/orspec/v39y2017i1d10.1007_s00291-016-0452-0.html
   My bibliography  Save this article

Critical level rationing in inventory systems with continuously distributed demand

Author

Listed:
  • P. Escalona

    (Universidad Técnica Federico Santa María)

  • F. Ordóñez

    (Universidad de Chile)

  • I. Kauak

    (Universidad Técnica Federico Santa María)

Abstract

This paper analyzes the use of a constant critical level policy for fast-moving items, where rationing is used to provide differentiated service levels to two demand classes (high priority and low priority). The previous work on critical level models, with either a continuous or periodic review policy, has only considered slow-moving items with Poisson demand. In this work, we consider a continuous review (Q, r, C) policy with two demand classes that are modeled through continuous distributions, and the service levels are measured by the probability of satisfying the entire demand of each class during the lead time. We formulate a service level problem as an non-linear problem with chance constraints for which we optimally solve a relaxation obtaining a closed-form solution that can be computed easily. For instances, we tested, computational results show that our solution approach provides good-quality solutions that are on average $$0.3~\%$$ 0.3 % from the optimal solution.

Suggested Citation

  • P. Escalona & F. Ordóñez & I. Kauak, 2017. "Critical level rationing in inventory systems with continuously distributed demand," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 273-301, January.
  • Handle: RePEc:spr:orspec:v:39:y:2017:i:1:d:10.1007_s00291-016-0452-0
    DOI: 10.1007/s00291-016-0452-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00291-016-0452-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00291-016-0452-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hasan Arslan & Stephen C. Graves & Thomas A. Roemer, 2007. "A Single-Product Inventory Model for Multiple Demand Classes," Management Science, INFORMS, vol. 53(9), pages 1486-1500, September.
    2. Meerschaert, Mark M. & Scheffler, Hans-Peter, 2008. "Triangular array limits for continuous time random walks," Stochastic Processes and their Applications, Elsevier, vol. 118(9), pages 1606-1633, September.
    3. P Melchiors & R Dekker & M J Kleijn, 2000. "Inventory rationing in an (s, Q) inventory model with lost sales and two demand classes," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(1), pages 111-122, January.
    4. Vinayak Deshpande & Morris A. Cohen & Karen Donohue, 2003. "A Threshold Inventory Rationing Policy for Service-Differentiated Demand Classes," Management Science, INFORMS, vol. 49(6), pages 683-703, June.
    5. Serfozo, Richard & Stidham, Shaler, 1978. "Semi-stationary clearing processes," Stochastic Processes and their Applications, Elsevier, vol. 6(2), pages 165-178, January.
    6. Dekker, R. & Kleijn, M. J. & de Rooij, P. J., 1998. "A spare parts stocking policy based on equipment criticality," International Journal of Production Economics, Elsevier, vol. 56(1), pages 69-77, September.
    7. Steven Nahmias & W. Steven Demmy, 1981. "Operating Characteristics of an Inventory System with Rationing," Management Science, INFORMS, vol. 27(11), pages 1236-1245, November.
    8. Katrien Ramaekers & Gerrit K. Janssens, 2008. "On the choice of a demand distribution for inventory management models," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 2(4), pages 479-491.
    9. Francis De Vericourt & Fikri Karaesmen & Yves Dallery, 2000. "Dynamic Scheduling in a Make-to-Stock System: A Partial Characterization of Optimal Policies," Operations Research, INFORMS, vol. 48(5), pages 811-819, October.
    10. Albert Y. Ha, 2000. "Stock Rationing in an M/E k /1 Make-to-Stock Queue," Management Science, INFORMS, vol. 46(1), pages 77-87, January.
    11. FadIloglu, Mehmet Murat & Bulut, Önder, 2010. "A dynamic rationing policy for continuous-review inventory systems," European Journal of Operational Research, Elsevier, vol. 202(3), pages 675-685, May.
    12. Rajesh Piplani & Shudong Liu, 2014. "Comparison of capacity rationing policies for a make-to-order production system with two customer classes," International Journal of Industrial and Systems Engineering, Inderscience Enterprises Ltd, vol. 16(2), pages 223-237.
    13. Albert Y. Ha, 1997. "Inventory Rationing in a Make-to-Stock Production System with Several Demand Classes and Lost Sales," Management Science, INFORMS, vol. 43(8), pages 1093-1103, August.
    14. Teunter, Ruud H. & Klein Haneveld, Willem K., 2008. "Dynamic inventory rationing strategies for inventory systems with two demand classes, Poisson demand and backordering," European Journal of Operational Research, Elsevier, vol. 190(1), pages 156-178, October.
    15. Gary D. Eppen, 1979. "Note--Effects of Centralization on Expected Costs in a Multi-Location Newsboy Problem," Management Science, INFORMS, vol. 25(5), pages 498-501, May.
    16. Francis de Véricourt & Fikri Karaesmen & Yves Dallery, 2002. "Optimal Stock Allocation for a Capacitated Supply System," Management Science, INFORMS, vol. 48(11), pages 1486-1501, November.
    17. Yu-Sheng Zheng, 1992. "On Properties of Stochastic Inventory Systems," Management Science, INFORMS, vol. 38(1), pages 87-103, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Quan-Lin Li & Yi-Meng Li & Jing-Yu Ma & Heng-Li Liu, 2023. "A complete algebraic solution to the optimal dynamic rationing policy in the stock-rationing queue with two demand classes," Journal of Combinatorial Optimization, Springer, vol. 45(3), pages 1-54, April.
    2. Ma, Weina & Hekimoğlu, Mustafa & Dekker, Rommert, 2023. "Admission control for a capacitated supply system with real-time replenishment information," International Journal of Production Economics, Elsevier, vol. 266(C).
    3. Escalona, P. & Marianov, V. & Ordóñez, F. & Stegmaier, R., 2018. "On the effect of inventory policies on distribution network design with several demand classes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 229-240.
    4. Umay Uzunoglu Kocer & Bahar Yalcin, 2020. "Continuous review (s, Q) inventory system with random lifetime and two demand classes," OPSEARCH, Springer;Operational Research Society of India, vol. 57(1), pages 104-118, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Shudong & Song, Miao & Tan, Kok Choon & Zhang, Changyong, 2015. "Multi-class dynamic inventory rationing with stochastic demands and backordering," European Journal of Operational Research, Elsevier, vol. 244(1), pages 153-163.
    2. Samii, Amir-Behzad, 2016. "Impact of nested inventory allocation policies in a newsvendor setting," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 247-256.
    3. ElHafsi, Mohsen & Fang, Jianxin & Hamouda, Essia, 2021. "Optimal production and inventory control of multi-class mixed backorder and lost sales demand class models," European Journal of Operational Research, Elsevier, vol. 291(1), pages 147-161.
    4. Alfieri, Arianna & Pastore, Erica & Zotteri, Giulio, 2017. "Dynamic inventory rationing: How to allocate stock according to managerial priorities. An empirical study," International Journal of Production Economics, Elsevier, vol. 189(C), pages 14-29.
    5. Quan-Lin Li & Yi-Meng Li & Jing-Yu Ma & Heng-Li Liu, 2023. "A complete algebraic solution to the optimal dynamic rationing policy in the stock-rationing queue with two demand classes," Journal of Combinatorial Optimization, Springer, vol. 45(3), pages 1-54, April.
    6. Bing Lin & Shaoxiang Chen & Yi Feng & Jianjun Xu, 2018. "The Joint Stock and Capacity Rationings of a Make-To-Stock System with Flexible Demand," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(01), pages 1-27, February.
    7. FadIloglu, Mehmet Murat & Bulut, Önder, 2010. "A dynamic rationing policy for continuous-review inventory systems," European Journal of Operational Research, Elsevier, vol. 202(3), pages 675-685, May.
    8. Karin T. Möllering & Ulrich W. Thonemann, 2008. "An optimal critical level policy for inventory systems with two demand classes," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(7), pages 632-642, October.
    9. Teunter, Ruud H. & Klein Haneveld, Willem K., 2008. "Dynamic inventory rationing strategies for inventory systems with two demand classes, Poisson demand and backordering," European Journal of Operational Research, Elsevier, vol. 190(1), pages 156-178, October.
    10. Hasan Arslan & Stephen C. Graves & Thomas A. Roemer, 2007. "A Single-Product Inventory Model for Multiple Demand Classes," Management Science, INFORMS, vol. 53(9), pages 1486-1500, September.
    11. Zümbül Atan & Lawrence V. Snyder & George R. Wilson, 2018. "Transshipment policies for systems with multiple retailers and two demand classes," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(1), pages 159-186, January.
    12. Mohammad Najjartabar Bisheh & G. Reza Nasiri & Esmaeil Esmaeili & Hamid Davoudpour & Shing I. Chang, 2022. "A new supply chain distribution network design for two classes of customers using transfer recurrent neural network," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2604-2618, October.
    13. Samii, Amir-Behzad & Pibernik, Richard & Yadav, Prashant & Vereecke, Ann, 2012. "Reservation and allocation policies for influenza vaccines," European Journal of Operational Research, Elsevier, vol. 222(3), pages 495-507.
    14. Felix Papier & Ulrich W. Thonemann, 2010. "Capacity Rationing in Stochastic Rental Systems with Advance Demand Information," Operations Research, INFORMS, vol. 58(2), pages 274-288, April.
    15. van Jaarsveld, W.L. & Dekker, R., 2009. "Finding optimal policies in the (S - 1, S ) lost sales inventory model with multiple demand classes," Econometric Institute Research Papers EI 2009-14, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    16. ElHafsi, Mohsen & Camus, Herve & Craye, Etienne, 2010. "Managing an integrated production inventory system with information on the production and demand status and multiple non-unitary demand classes," European Journal of Operational Research, Elsevier, vol. 207(2), pages 986-1001, December.
    17. Pourakbar, Morteza & Dekker, Rommert, 2012. "Customer differentiated end-of-life inventory problem," European Journal of Operational Research, Elsevier, vol. 222(1), pages 44-53.
    18. Gabor, Adriana F. & van Ommeren, Jan-Kees & Sleptchenko, Andrei, 2022. "An inventory model with discounts for omnichannel retailers of slow moving items," European Journal of Operational Research, Elsevier, vol. 300(1), pages 58-72.
    19. Xu, Jianjun & Serrano, Alejandro & Lin, Bing, 2017. "Optimal production and rationing policy of two-stage tandem production system," International Journal of Production Economics, Elsevier, vol. 185(C), pages 100-112.
    20. Escalona, P. & Ordóñez, F. & Marianov, V., 2015. "Joint location-inventory problem with differentiated service levels using critical level policy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 83(C), pages 141-157.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:orspec:v:39:y:2017:i:1:d:10.1007_s00291-016-0452-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.