IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v76y2006i1p69-82.html
   My bibliography  Save this article

Some new tests for normality based on U-processes

Author

Listed:
  • Arcones, Miguel A.
  • Wang, Yishi

Abstract

We present two new tests for normality based on U-processes. These tests improve on the Lilliefors tests. We obtain the consistency and asymptotic null distribution of these tests. We present simulations of the power of these tests and of several classical tests for some fixed alternatives. These simulations show that the presented tests are competitive.

Suggested Citation

  • Arcones, Miguel A. & Wang, Yishi, 2006. "Some new tests for normality based on U-processes," Statistics & Probability Letters, Elsevier, vol. 76(1), pages 69-82, January.
  • Handle: RePEc:eee:stapro:v:76:y:2006:i:1:p:69-82
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(05)00268-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Truc Nguyen & Khoan Dinh, 2003. "Characterizations of normal distributions and EDF goodness-of-fit tests," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 58(2), pages 149-157, September.
    2. L. Baringhaus & N. Henze, 1988. "A consistent test for multivariate normality based on the empirical characteristic function," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 35(1), pages 339-348, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kleijnen, J.P.C., 2007. "Simulation Experiments in Practice : Statistical Design and Regression Analysis," Discussion Paper 2007-09, Tilburg University, Center for Economic Research.
    2. Schick, Anton & Wang, Yishi & Wefelmeyer, Wolfgang, 2011. "Tests for normality based on density estimators of convolutions," Statistics & Probability Letters, Elsevier, vol. 81(2), pages 337-343, February.
    3. Kleijnen, J.P.C., 2006. "White Noise Assumptions Revisited : Regression Models and Statistical Designs for Simulation Practice," Discussion Paper 2006-50, Tilburg University, Center for Economic Research.
    4. Salim Bouzebda & Amel Nezzal & Tarek Zari, 2022. "Uniform Consistency for Functional Conditional U -Statistics Using Delta-Sequences," Mathematics, MDPI, vol. 11(1), pages 1-39, December.
    5. Salim Bouzebda & Thouria El-hadjali & Anouar Abdeldjaoued Ferfache, 2023. "Uniform in Bandwidth Consistency of Conditional U-statistics Adaptive to Intrinsic Dimension in Presence of Censored Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(2), pages 1548-1606, August.
    6. Tenreiro, Carlos, 2009. "On the choice of the smoothing parameter for the BHEP goodness-of-fit test," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1038-1053, February.
    7. Christian Goldmann & Bernhard Klar & Simos Meintanis, 2015. "Data transformations and goodness-of-fit tests for type-II right censored samples," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(1), pages 59-83, January.
    8. Salim Bouzebda & Inass Soukarieh, 2022. "Non-Parametric Conditional U -Processes for Locally Stationary Functional Random Fields under Stochastic Sampling Design," Mathematics, MDPI, vol. 11(1), pages 1-69, December.
    9. Salim Bouzebda, 2024. "Limit Theorems in the Nonparametric Conditional Single-Index U -Processes for Locally Stationary Functional Random Fields under Stochastic Sampling Design," Mathematics, MDPI, vol. 12(13), pages 1-81, June.
    10. Salim Bouzebda & Boutheina Nemouchi, 2023. "Weak-convergence of empirical conditional processes and conditional U-processes involving functional mixing data," Statistical Inference for Stochastic Processes, Springer, vol. 26(1), pages 33-88, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schick, Anton & Wang, Yishi & Wefelmeyer, Wolfgang, 2011. "Tests for normality based on density estimators of convolutions," Statistics & Probability Letters, Elsevier, vol. 81(2), pages 337-343, February.
    2. Dante Amengual & Marine Carrasco & Enrique Sentana, 2017. "Testing Distributional Assumptions Using a Continuum of Moments," Working Papers wp2018_1709, CEMFI.
    3. N. Henze, 1990. "An approximation to the limit distribution of the epps-pulley test statistic for normality," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 37(1), pages 7-18, December.
    4. M. Dolores Jiménez-Gamero, 2020. "Comments on: Tests for multivariate normality—a critical review with emphasis on weighted $$L^2$$ L 2 -statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 893-897, December.
    5. M. Jiménez Gamero, 2014. "On the empirical characteristic function process of the residuals in GARCH models and applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 409-432, June.
    6. Norbert Henze & María Dolores Jiménez-Gamero, 2019. "A new class of tests for multinormality with i.i.d. and garch data based on the empirical moment generating function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 499-521, June.
    7. Jiménez-Gamero, M. Dolores & Kim, Hyoung-Moon, 2015. "Fast goodness-of-fit tests based on the characteristic function," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 172-191.
    8. Philip Dörr & Bruno Ebner & Norbert Henze, 2021. "Testing multivariate normality by zeros of the harmonic oscillator in characteristic function spaces," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 456-501, June.
    9. Tenreiro, Carlos, 2011. "An affine invariant multiple test procedure for assessing multivariate normality," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1980-1992, May.
    10. Zacharias Psaradakis & Marián Vávra, 2017. "Normality Tests for Dependent Data: Large-Sample and Bootstrap Approaches," Birkbeck Working Papers in Economics and Finance 1706, Birkbeck, Department of Economics, Mathematics & Statistics.
    11. N. Balakrishnan & M. Brito & A. Quiroz, 2013. "On the goodness-of-fit procedure for normality based on the empirical characteristic function for ranked set sampling data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(2), pages 161-177, February.
    12. Bruno Ebner & Norbert Henze, 2023. "On the eigenvalues associated with the limit null distribution of the Epps-Pulley test of normality," Statistical Papers, Springer, vol. 64(3), pages 739-752, June.
    13. Meintanis, S. & Ushakov, N. G., 2004. "Binned goodness-of-fit tests based on the empirical characteristic function," Statistics & Probability Letters, Elsevier, vol. 69(3), pages 305-314, September.
    14. Henze, Norbert & Wagner, Thorsten, 1997. "A New Approach to the BHEP Tests for Multivariate Normality," Journal of Multivariate Analysis, Elsevier, vol. 62(1), pages 1-23, July.
    15. Steffen Betsch & Bruno Ebner, 2020. "Testing normality via a distributional fixed point property in the Stein characterization," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 105-138, March.
    16. E. Bothma & J. S. Allison & I. J. H. Visagie, 2022. "New classes of tests for the Weibull distribution using Stein’s method in the presence of random right censoring," Computational Statistics, Springer, vol. 37(4), pages 1751-1770, September.
    17. Fan, Yanqin, 1997. "Goodness-of-Fit Tests for a Multivariate Distribution by the Empirical Characteristic Function," Journal of Multivariate Analysis, Elsevier, vol. 62(1), pages 36-63, July.
    18. Sándor Csörgő, 1989. "Consistency of some tests for multivariate normality," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 36(1), pages 107-116, December.
    19. A. Cabaña & E. M. Cabaña, 2003. "Tests of Normality Based on Transformed Empirical Processes," Methodology and Computing in Applied Probability, Springer, vol. 5(3), pages 309-335, September.
    20. Wanfang Chen & Marc G. Genton, 2023. "Are You All Normal? It Depends!," International Statistical Review, International Statistical Institute, vol. 91(1), pages 114-139, April.

    More about this item

    Keywords

    Test of normality U-processes;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:76:y:2006:i:1:p:69-82. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.