IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i13p1996-d1424196.html
   My bibliography  Save this article

Limit Theorems in the Nonparametric Conditional Single-Index U -Processes for Locally Stationary Functional Random Fields under Stochastic Sampling Design

Author

Listed:
  • Salim Bouzebda

    (Laboratory of Applied Mathematics of Compiègne (LMAC), Université de Technologie de Compiègne, CS 60319-60203 Compiègne Cedex, France)

Abstract

In his work published in (Ann. Probab. 19, No. 2 (1991), 812–825), W. Stute introduced the notion of conditional U -statistics, expanding upon the Nadaraya–Watson estimates used for regression functions. Stute illustrated the pointwise consistency and asymptotic normality of these statistics. Our research extends these concepts to a broader scope, establishing, for the first time, an asymptotic framework for single-index conditional U -statistics applicable to locally stationary random fields { X s , A n : s i n R n } observed at irregularly spaced locations in R n , a subset of R d . We introduce an estimator for the single-index conditional U -statistics operator that accommodates the nonstationary nature of the data-generating process. Our method employs a stochastic sampling approach that allows for the flexible creation of irregularly spaced sampling sites, covering both pure and mixed increasing domain frameworks. We establish the uniform convergence rate and weak convergence of the single conditional U -processes. Specifically, we examine weak convergence under bounded or unbounded function classes that satisfy specific moment conditions. These findings are established under general structural conditions on the function classes and underlying models. The theoretical advancements outlined in this paper form essential foundations for potential breakthroughs in functional data analysis, laying the groundwork for future research in this field. Moreover, in the same context, we show the uniform consistency for the nonparametric inverse probability of censoring weighted (I.P.C.W.) estimators of the regression function under random censorship, which is of its own interest. Potential applications of our findings encompass, among many others, the set-indexed conditional U -statistics, the Kendall rank correlation coefficient, and the discrimination problems.

Suggested Citation

  • Salim Bouzebda, 2024. "Limit Theorems in the Nonparametric Conditional Single-Index U -Processes for Locally Stationary Functional Random Fields under Stochastic Sampling Design," Mathematics, MDPI, vol. 12(13), pages 1-81, June.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:13:p:1996-:d:1424196
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/13/1996/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/13/1996/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arcones, Miguel A. & Wang, Yishi, 2006. "Some new tests for normality based on U-processes," Statistics & Probability Letters, Elsevier, vol. 76(1), pages 69-82, January.
    2. Mohammed Attouch & Ali Laksaci & Fatima Rafaa, 2019. "On the local linear estimate for functional regression: Uniform in bandwidth consistency," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 48(8), pages 1836-1853, April.
    3. Gérard Biau & Benoît Cadre, 2004. "Nonparametric Spatial Prediction," Statistical Inference for Stochastic Processes, Springer, vol. 7(3), pages 327-349, October.
    4. Tingjin Chu & Jialuo Liu & Jun Zhu & Haonan Wang, 2022. "Spatio-Temporal Expanding Distance Asymptotic Framework for Locally Stationary Processes," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 689-713, August.
    5. Joly, Emilien & Lugosi, Gábor, 2016. "Robust estimation of U-statistics," Stochastic Processes and their Applications, Elsevier, vol. 126(12), pages 3760-3773.
    6. Nengxiang Ling & Lilei Cheng & Philippe Vieu & Hui Ding, 2022. "Missing responses at random in functional single index model for time series data," Statistical Papers, Springer, vol. 63(2), pages 665-692, April.
    7. Zhiqiang Jiang & Zhensheng Huang & Jing Zhang, 2023. "Functional single-index composite quantile regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(5), pages 595-603, July.
    8. Silvia Novo & Germán Aneiros & Philippe Vieu, 2019. "Automatic and location-adaptive estimation in functional single-index regression," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 31(2), pages 364-392, April.
    9. Yasumasa Matsuda & Yoshihiro Yajima, 2009. "Fourier analysis of irregularly spaced data on Rd," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 191-217, January.
    10. Bradley, Richard C., 1989. "A caution on mixing conditions for random fields," Statistics & Probability Letters, Elsevier, vol. 8(5), pages 489-491, October.
    11. Harel, Michel & Puri, Madan L., 1996. "ConditionalU-Statistics for Dependent Random Variables," Journal of Multivariate Analysis, Elsevier, vol. 57(1), pages 84-100, April.
    12. Tran, L. T. & Yakowitz, S., 1993. "Nearest Neighbor Estimators for Random Fields," Journal of Multivariate Analysis, Elsevier, vol. 44(1), pages 23-46, January.
    13. Salim Bouzebda & Sultana Didi, 2017. "Additive regression model for stationary and ergodic continuous time processes," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(5), pages 2454-2493, March.
    14. Th. Gasser & P. Hall & B. Presnell, 1998. "Nonparametric estimation of the mode of a distribution of random curves," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(4), pages 681-691.
    15. Nengxiang Ling & Shuyu Meng & Philippe Vieu, 2019. "Uniform consistency rate of kNN regression estimation for functional time series data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 31(2), pages 451-468, April.
    16. Tran, Lanh Tat, 1990. "Kernel density estimation on random fields," Journal of Multivariate Analysis, Elsevier, vol. 34(1), pages 37-53, July.
    17. Dahlhaus, Rainer & Richter, Stefan, 2023. "Adaptation For Nonparametric Estimators Of Locally Stationary Processes," Econometric Theory, Cambridge University Press, vol. 39(6), pages 1123-1153, December.
    18. Yunlong Nie & Liangliang Wang & Jiguo Cao, 2023. "Estimating functional single index models with compact support," Environmetrics, John Wiley & Sons, Ltd., vol. 34(2), March.
    19. Salim Bouzebda & Boutheina Nemouchi, 2020. "Uniform consistency and uniform in bandwidth consistency for nonparametric regression estimates and conditional U-statistics involving functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 32(2), pages 452-509, April.
    20. Said Attaoui & Nengxiang Ling, 2016. "Asymptotic results of a nonparametric conditional cumulative distribution estimator in the single functional index modeling for time series data with applications," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(5), pages 485-511, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salim Bouzebda & Inass Soukarieh, 2022. "Non-Parametric Conditional U -Processes for Locally Stationary Functional Random Fields under Stochastic Sampling Design," Mathematics, MDPI, vol. 11(1), pages 1-69, December.
    2. Salim Bouzebda & Amel Nezzal & Tarek Zari, 2022. "Uniform Consistency for Functional Conditional U -Statistics Using Delta-Sequences," Mathematics, MDPI, vol. 11(1), pages 1-39, December.
    3. Salim Bouzebda & Boutheina Nemouchi, 2023. "Weak-convergence of empirical conditional processes and conditional U-processes involving functional mixing data," Statistical Inference for Stochastic Processes, Springer, vol. 26(1), pages 33-88, April.
    4. Salim Bouzebda & Thouria El-hadjali & Anouar Abdeldjaoued Ferfache, 2023. "Uniform in Bandwidth Consistency of Conditional U-statistics Adaptive to Intrinsic Dimension in Presence of Censored Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(2), pages 1548-1606, August.
    5. Michel Carbon, 2014. "Histograms for stationary linear random fields," Statistical Inference for Stochastic Processes, Springer, vol. 17(3), pages 245-266, October.
    6. Mohamed El Machkouri, 2011. "Asymptotic normality of the Parzen–Rosenblatt density estimator for strongly mixing random fields," Statistical Inference for Stochastic Processes, Springer, vol. 14(1), pages 73-84, February.
    7. Sultana Didi & Salim Bouzebda, 2022. "Wavelet Density and Regression Estimators for Continuous Time Functional Stationary and Ergodic Processes," Mathematics, MDPI, vol. 10(22), pages 1-37, November.
    8. Sophie Dabo-Niang & Anne-Françoise Yao, 2013. "Kernel spatial density estimation in infinite dimension space," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(1), pages 19-52, January.
    9. Li, Linyuan, 2015. "Nonparametric adaptive density estimation on random fields using wavelet method," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 346-355.
    10. Nadia Bensaïd & Sophie Dabo-Niang, 2010. "Frequency polygons for continuous random fields," Statistical Inference for Stochastic Processes, Springer, vol. 13(1), pages 55-80, April.
    11. Bouzebda, Salim & Slaoui, Yousri, 2019. "Large and moderate deviation principles for recursive kernel estimators of a regression function for spatial data defined by stochastic approximation method," Statistics & Probability Letters, Elsevier, vol. 151(C), pages 17-28.
    12. Ahmad Younso, 2023. "On the consistency of mode estimate for spatially dependent data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(3), pages 343-372, April.
    13. Roussas, George G., 1995. "Asymptotic normality of a smooth estimate of a random field distribution function under association," Statistics & Probability Letters, Elsevier, vol. 24(1), pages 77-90, July.
    14. Michel Carbon, 2005. "Frequency Polygons for Random Fields," Working Papers 2005-04, Center for Research in Economics and Statistics.
    15. Gao, Jiti & Lu, Zudi & Tjostheim, Dag, 2003. "Estimation in semiparametric spatial regression," MPRA Paper 11979, University Library of Munich, Germany, revised Jul 2005.
    16. Tsung-Lin Cheng & Hwai-Chung Ho & Xuewen Lu, 2008. "A Note on Asymptotic Normality of Kernel Estimation for Linear Random Fields on Z 2," Journal of Theoretical Probability, Springer, vol. 21(2), pages 267-286, June.
    17. Biau, Gérard, 2002. "Optimal asymptotic quadratic errors of density estimators on random fields," Statistics & Probability Letters, Elsevier, vol. 60(3), pages 297-307, December.
    18. Tang Qingguo & Cheng Longsheng, 2010. "B-spline estimation for spatial data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(2), pages 197-217.
    19. Hallin, Marc & Lu, Zudi & Tran, Lanh T., 2004. "Kernel density estimation for spatial processes: the L1 theory," Journal of Multivariate Analysis, Elsevier, vol. 88(1), pages 61-75, January.
    20. Sophie Dabo-Niang & Zoulikha Kaid & Ali Laksaci, 2015. "Asymptotic properties of the kernel estimate of spatial conditional mode when the regressor is functional," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(2), pages 131-160, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:13:p:1996-:d:1424196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.