IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v22y1995i2p149-156.html
   My bibliography  Save this article

On the strong uniform consistency of density estimation for strongly dependent sequences

Author

Listed:
  • Ho, Hwai-Chung

Abstract

For a stationary, possibly strongly dependent sequence {Xi} of standard Gaussian random variables, the strong uniform consistency of the kernel density estimates for sequence {Yi} modeled by Yi = H(Xt1 + i, ..., Xtd + i) is proved.

Suggested Citation

  • Ho, Hwai-Chung, 1995. "On the strong uniform consistency of density estimation for strongly dependent sequences," Statistics & Probability Letters, Elsevier, vol. 22(2), pages 149-156, February.
  • Handle: RePEc:eee:stapro:v:22:y:1995:i:2:p:149-156
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0167-7152(94)00061-C
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tran, Lanh Tat, 1992. "Kernel density estimation for linear processes," Stochastic Processes and their Applications, Elsevier, vol. 41(2), pages 281-296, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michel Harel & Jean-François Lenain & Joseph Ngatchou-Wandji, 2016. "Asymptotic behaviour of binned kernel density estimators for locally non-stationary random fields," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 296-321, June.
    2. Hallin, Marc & Lu, Zudi & Tran, Lanh T., 2004. "Kernel density estimation for spatial processes: the L1 theory," Journal of Multivariate Analysis, Elsevier, vol. 88(1), pages 61-75, January.
    3. Masry, Elias, 1997. "Multivariate probability density estimation by wavelet methods: Strong consistency and rates for stationary time series," Stochastic Processes and their Applications, Elsevier, vol. 67(2), pages 177-193, May.
    4. Müller, Ursula U. & Schick, Anton & Wefelmeyer, Wolfgang, 2015. "Estimators in step regression models," Statistics & Probability Letters, Elsevier, vol. 100(C), pages 124-129.
    5. Schick, Anton & Wefelmeyer, Wolfgang, 2007. "Prediction in invertible linear processes," Statistics & Probability Letters, Elsevier, vol. 77(12), pages 1322-1331, July.
    6. Livasoa Andriamampionona & Victor Harison & Michel Harel, 2024. "Non-Parametric Estimation of the Renewal Function for Multidimensional Random Fields," Mathematics, MDPI, vol. 12(12), pages 1-22, June.
    7. Hwang, Eunju & Shin, Dong Wan, 2012. "Stationary bootstrap for kernel density estimators under ψ-weak dependence," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1581-1593.
    8. Anton Schick & Wolfgang Wefelmeyer, 2008. "Root-n consistency in weighted L 1 -spaces for density estimators of invertible linear processes," Statistical Inference for Stochastic Processes, Springer, vol. 11(3), pages 281-310, October.
    9. Schick, Anton & Wefelmeyer, Wolfgang, 2006. "Pointwise convergence rates and central limit theorems for kernel density estimators in linear processes," Statistics & Probability Letters, Elsevier, vol. 76(16), pages 1756-1760, October.
    10. Timothy Fortune & Hailin Sang, 2020. "Shannon Entropy Estimation for Linear Processes," JRFM, MDPI, vol. 13(9), pages 1-13, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:22:y:1995:i:2:p:149-156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.