IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i12p1862-d1415108.html
   My bibliography  Save this article

Non-Parametric Estimation of the Renewal Function for Multidimensional Random Fields

Author

Listed:
  • Livasoa Andriamampionona

    (Department of Mathematics and Informatics, University of Antananarivo, Antananarivo 101, Madagascar)

  • Victor Harison

    (Department of Mathematics and Informatics, University of Antananarivo, Antananarivo 101, Madagascar)

  • Michel Harel

    (Laboratoire Vie-Santé, UR 24 134, Faculté de Médecine, 2 Av. Martin Luther King, 87025 Limoges, France
    INSPE de Limoges, Université de Limoges, 209 Bd. de Vanteaux, 87000 Limoges, France
    Institut de Mathématiques de Toulouse, UMR CNRS 5219, 31062 Toulouse, France)

Abstract

This paper addresses the almost sure convergence and the asymptotic normality of an estimator of the multidimensional renewal function based on random fields. The estimator is based on a sequence of non-negative independent and identically distributed ( i . i . d . ) multidimensional random fields and is expressed as infinite sums of k -folds convolutions of the empirical distribution function. It is an extension of the work from the case of the two-dimensional random fields to the case of the d -dimensional random fields where d > 2 . This is established by the definition of a “strict order relation”. Concrete applications are given.

Suggested Citation

  • Livasoa Andriamampionona & Victor Harison & Michel Harel, 2024. "Non-Parametric Estimation of the Renewal Function for Multidimensional Random Fields," Mathematics, MDPI, vol. 12(12), pages 1-22, June.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:12:p:1862-:d:1415108
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/12/1862/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/12/1862/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tran, Lanh Tat, 1992. "Kernel density estimation for linear processes," Stochastic Processes and their Applications, Elsevier, vol. 41(2), pages 281-296, June.
    2. Michel Harel & Jean-François Lenain & Joseph Ngatchou-Wandji, 2016. "Asymptotic behaviour of binned kernel density estimators for locally non-stationary random fields," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 296-321, June.
    3. Carbon, Michel & Garel, Bernard & Tran, Lanh Tat, 1997. "Frequency polygons for weakly dependent processes," Statistics & Probability Letters, Elsevier, vol. 33(1), pages 1-13, April.
    4. Livasoa Andriamampionona & Victor Harison & Michel Harel, 2023. "Asymptotic Behavior of a Nonparametric Estimator of the Renewal Function for Random Fields," Mathematics, MDPI, vol. 11(19), pages 1-13, September.
    5. Hallin, Marc & Lu, Zudi & Tran, Lanh T., 2004. "Kernel density estimation for spatial processes: the L1 theory," Journal of Multivariate Analysis, Elsevier, vol. 88(1), pages 61-75, January.
    6. Biau, Gérard, 2002. "Optimal asymptotic quadratic errors of density estimators on random fields," Statistics & Probability Letters, Elsevier, vol. 60(3), pages 297-307, December.
    7. Tran, Lanh Tat, 1990. "Kernel density estimation on random fields," Journal of Multivariate Analysis, Elsevier, vol. 34(1), pages 37-53, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michel Harel & Jean-François Lenain & Joseph Ngatchou-Wandji, 2016. "Asymptotic behaviour of binned kernel density estimators for locally non-stationary random fields," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 296-321, June.
    2. Ahmad Younso, 2023. "On the consistency of mode estimate for spatially dependent data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(3), pages 343-372, April.
    3. Zhenyu Jiang & Nengxiang Ling & Zudi Lu & Dag Tj⊘stheim & Qiang Zhang, 2020. "On bandwidth choice for spatial data density estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 817-840, July.
    4. Nadia Bensaïd & Sophie Dabo-Niang, 2010. "Frequency polygons for continuous random fields," Statistical Inference for Stochastic Processes, Springer, vol. 13(1), pages 55-80, April.
    5. Tang Qingguo, 2015. "Robust estimation for spatial semiparametric varying coefficient partially linear regression," Statistical Papers, Springer, vol. 56(4), pages 1137-1161, November.
    6. Gao, Jiti & Lu, Zudi & Tjostheim, Dag, 2003. "Estimation in semiparametric spatial regression," MPRA Paper 11979, University Library of Munich, Germany, revised Jul 2005.
    7. Gérard Biau & Benoît Cadre, 2004. "Nonparametric Spatial Prediction," Statistical Inference for Stochastic Processes, Springer, vol. 7(3), pages 327-349, October.
    8. Hallin, Marc & Lu, Zudi & Tran, Lanh T., 2004. "Kernel density estimation for spatial processes: the L1 theory," Journal of Multivariate Analysis, Elsevier, vol. 88(1), pages 61-75, January.
    9. Mohamed El Machkouri, 2013. "On the asymptotic normality of frequency polygons for strongly mixing spatial processes," Statistical Inference for Stochastic Processes, Springer, vol. 16(3), pages 193-206, October.
    10. Kuangyu Wen & Ximing Wu & David J. Leatham, 2021. "Spatially Smoothed Kernel Densities with Application to Crop Yield Distributions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 349-366, September.
    11. Mohamed El Machkouri, 2011. "Asymptotic normality of the Parzen–Rosenblatt density estimator for strongly mixing random fields," Statistical Inference for Stochastic Processes, Springer, vol. 14(1), pages 73-84, February.
    12. Amiri, Aboubacar & Dabo-Niang, Sophie, 2018. "Density estimation over spatio-temporal data streams," Econometrics and Statistics, Elsevier, vol. 5(C), pages 148-170.
    13. Sophie Dabo-Niang & Anne-Françoise Yao, 2013. "Kernel spatial density estimation in infinite dimension space," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(1), pages 19-52, January.
    14. Liliana Forzani & Ricardo Fraiman & Pamela Llop, 2013. "Density estimation for spatial-temporal models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 321-342, June.
    15. Zhengyan Lin & Degui Li & Jiti Gao, 2009. "Local Linear M‐estimation in non‐parametric spatial regression," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(3), pages 286-314, May.
    16. Robinson, P.M., 2011. "Asymptotic theory for nonparametric regression with spatial data," Journal of Econometrics, Elsevier, vol. 165(1), pages 5-19.
    17. Gao, Jiti & Lu, Zudi & Tjøstheim, Dag, 2008. "Moment inequalities for spatial processes," Statistics & Probability Letters, Elsevier, vol. 78(6), pages 687-697, April.
    18. Lee, Y. K. & Choi, H. & Park, B. U. & Yu, K. S., 2004. "Local likelihood density estimation on random fields," Statistics & Probability Letters, Elsevier, vol. 68(4), pages 347-357, July.
    19. Tang Qingguo, 2013. "B-spline estimation for semiparametric varying-coefficient partially linear regression with spatial data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(2), pages 361-378, June.
    20. Jia Chen & Li-Xin Zhang, 2010. "Local linear M-estimation for spatial processes in fixed-design models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 71(3), pages 319-340, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:12:p:1862-:d:1415108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.