IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v21y2009i5p567-588.html
   My bibliography  Save this article

Estimation of the trend function for spatio-temporal models

Author

Listed:
  • Hongxia Wang
  • Jinde Wang

Abstract

Spatiotemporal models have been applied in several scientific disciplines. A crucial problem is estimation of the trend function. Although nonparametric regression for spatial data has been studied in many papers, it is not the case for spatio-temporal data. In this article, we propose a local linear fitting method for spatio-temporal data and investigate the problem under what conditions the proposed method can work well. To guarantee the uniformly weakly consistent and asymptotically normal properties, it is just required that at a fixed location i0, {R(i0, t), t∈Tn} is strictly stationary, at a fixed moment t0, {R(i, t0), i∈Λn} is strictly stationary which is weaker than {R(i, t), i∈Λn, t∈Tn} is strictly stationary both in time and space locations. This assumption can be met often in practice, and the proposed estimation method can be applied widely. The simulation results and case study show that the estimator performs well.

Suggested Citation

  • Hongxia Wang & Jinde Wang, 2009. "Estimation of the trend function for spatio-temporal models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(5), pages 567-588.
  • Handle: RePEc:taf:gnstxx:v:21:y:2009:i:5:p:567-588
    DOI: 10.1080/10485250902783608
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485250902783608
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485250902783608?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohamed Machkouri, 2007. "Nonparametric Regression Estimation for Random Fields in a Fixed-Design," Statistical Inference for Stochastic Processes, Springer, vol. 10(1), pages 29-47, January.
    2. Gérard Biau & Benoît Cadre, 2004. "Nonparametric Spatial Prediction," Statistical Inference for Stochastic Processes, Springer, vol. 7(3), pages 327-349, October.
    3. Carbon, Michel & Tran, Lanh Tat & Wu, Berlin, 1997. "Kernel density estimation for random fields (density estimation for random fields)," Statistics & Probability Letters, Elsevier, vol. 36(2), pages 115-125, December.
    4. Hall, Peter & Hart, Jeffrey D., 1990. "Nonparametric regression with long-range dependence," Stochastic Processes and their Applications, Elsevier, vol. 36(2), pages 339-351, December.
    5. Lu, Zudi & Chen, Xing, 2004. "Spatial kernel regression estimation: weak consistency," Statistics & Probability Letters, Elsevier, vol. 68(2), pages 125-136, June.
    6. Tran, Lanh Tat, 1990. "Kernel density estimation on random fields," Journal of Multivariate Analysis, Elsevier, vol. 34(1), pages 37-53, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongxia Wang & Zihan Zhao & Hongxia Hao & Chao Huang, 2023. "Estimation and Inference for Spatio-Temporal Single-Index Models," Mathematics, MDPI, vol. 11(20), pages 1-32, October.
    2. Amiri, Aboubacar & Dabo-Niang, Sophie, 2018. "Density estimation over spatio-temporal data streams," Econometrics and Statistics, Elsevier, vol. 5(C), pages 148-170.
    3. Bastian Schäfer, 2021. "Bandwidth selection for the Local Polynomial Double Conditional Smoothing under Spatial ARMA Errors," Working Papers CIE 146, Paderborn University, CIE Center for International Economics.
    4. S.‐H. Arnaud Kanga & Ouagnina Hili & Sophie Dabo‐Niang & Assi N'Guessan, 2023. "Asymptotic properties of nonparametric quantile estimation with spatial dependency," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 77(3), pages 254-283, August.
    5. Hongxia Wang & Jinde Wang & Bo Huang, 2012. "Prediction for spatio-temporal models with autoregression in errors," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(1), pages 217-244.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sophie Dabo-Niang & Anne-Françoise Yao, 2013. "Kernel spatial density estimation in infinite dimension space," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(1), pages 19-52, January.
    2. Jia Chen & Li-Xin Zhang, 2010. "Local linear M-estimation for spatial processes in fixed-design models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 71(3), pages 319-340, May.
    3. Sophie Dabo-Niang & Zoulikha Kaid & Ali Laksaci, 2015. "Asymptotic properties of the kernel estimate of spatial conditional mode when the regressor is functional," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(2), pages 131-160, April.
    4. Mohamed El Machkouri, 2011. "Asymptotic normality of the Parzen–Rosenblatt density estimator for strongly mixing random fields," Statistical Inference for Stochastic Processes, Springer, vol. 14(1), pages 73-84, February.
    5. Mohammed Attouch & Ali Laksaci & Nafissa Messabihi, 2017. "Nonparametric relative error regression for spatial random variables," Statistical Papers, Springer, vol. 58(4), pages 987-1008, December.
    6. El Machkouri, Mohamed & Es-Sebaiy, Khalifa & Ouassou, Idir, 2017. "On local linear regression for strongly mixing random fields," Journal of Multivariate Analysis, Elsevier, vol. 156(C), pages 103-115.
    7. Sophie Dabo-Niang & Camille Ternynck & Anne-Françoise Yao, 2016. "Nonparametric prediction of spatial multivariate data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 428-458, June.
    8. Ahmad Younso, 2023. "On the consistency of mode estimate for spatially dependent data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(3), pages 343-372, April.
    9. Zhengyan Lin & Degui Li & Jiti Gao, 2009. "Local Linear M‐estimation in non‐parametric spatial regression," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(3), pages 286-314, May.
    10. Bouabsa Wahiba, 2022. "Unform in Bandwith of the Conditional Distribution Function with Functional Explanatory Variable: The Case of Spatial Data with the K Nearest Neighbour Method," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 26(2), pages 30-46, June.
    11. Tang Qingguo, 2015. "Robust estimation for spatial semiparametric varying coefficient partially linear regression," Statistical Papers, Springer, vol. 56(4), pages 1137-1161, November.
    12. Michel Carbon, 2014. "Histograms for stationary linear random fields," Statistical Inference for Stochastic Processes, Springer, vol. 17(3), pages 245-266, October.
    13. Kuangyu Wen & Ximing Wu & David J. Leatham, 2021. "Spatially Smoothed Kernel Densities with Application to Crop Yield Distributions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 349-366, September.
    14. Amiri, Aboubacar & Dabo-Niang, Sophie, 2018. "Density estimation over spatio-temporal data streams," Econometrics and Statistics, Elsevier, vol. 5(C), pages 148-170.
    15. Li, Linyuan, 2015. "Nonparametric adaptive density estimation on random fields using wavelet method," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 346-355.
    16. Tang Qingguo, 2013. "B-spline estimation for semiparametric varying-coefficient partially linear regression with spatial data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(2), pages 361-378, June.
    17. Sophie Dabo-Niang & Sidi Ould-Abdi & Ahmedoune Ould-Abdi & Aliou Diop, 2014. "Consistency of a nonparametric conditional mode estimator for random fields," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 1-39, March.
    18. Dabo-Niang, Sophie & Kaid, Zoulikha & Laksaci, Ali, 2012. "On spatial conditional mode estimation for a functional regressor," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1413-1421.
    19. Bouzebda, Salim & Slaoui, Yousri, 2019. "Large and moderate deviation principles for recursive kernel estimators of a regression function for spatial data defined by stochastic approximation method," Statistics & Probability Letters, Elsevier, vol. 151(C), pages 17-28.
    20. Michel Harel & Jean-François Lenain & Joseph Ngatchou-Wandji, 2016. "Asymptotic behaviour of binned kernel density estimators for locally non-stationary random fields," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 296-321, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:21:y:2009:i:5:p:567-588. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.