IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v82y2020i3p817-840.html
   My bibliography  Save this article

On bandwidth choice for spatial data density estimation

Author

Listed:
  • Zhenyu Jiang
  • Nengxiang Ling
  • Zudi Lu
  • Dag Tj⊘stheim
  • Qiang Zhang

Abstract

Bandwidth choice is crucial in spatial kernel estimation in exploring non‐Gaussian complex spatial data. The paper investigates the choice of adaptive and non‐adaptive bandwidths for density estimation given data on a spatial lattice. An adaptive bandwidth depends on local data and hence adaptively conforms with local features of the spatial data. We propose a spatial cross‐validation (SCV) choice of a global bandwidth. This is done first with a pilot density involved in the expression for the adaptive bandwidth. The optimality of the procedure is established, and it is shown that a non‐adaptive bandwidth choice comes out as a special case. Although the cross‐validation idea has been popular for choosing a non‐adaptive bandwidth in data‐driven smoothing of independent and time series data, its theory and application have not been much investigated for spatial data. For the adaptive case, there is little theory even for independent data. Conditions that ensure asymptotic optimality of the SCV‐selected bandwidth are derived, actually, also extending time series and independent data optimality results. Further, for the adaptive bandwidth with an estimated pilot density, oracle properties of the resultant density estimator are obtained asymptotically as if the true pilot were known. Numerical simulations show that finite sample performance of the SCV adaptive bandwidth choice works quite well. It outperforms the existing R routines such as the ‘rule of thumb’ and the so‐called ‘second‐generation’ Sheather–Jones bandwidths for moderate and big data sets. An empirical application to a set of spatial soil data is further implemented with non‐Gaussian features significantly identified.

Suggested Citation

  • Zhenyu Jiang & Nengxiang Ling & Zudi Lu & Dag Tj⊘stheim & Qiang Zhang, 2020. "On bandwidth choice for spatial data density estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 817-840, July.
  • Handle: RePEc:bla:jorssb:v:82:y:2020:i:3:p:817-840
    DOI: 10.1111/rssb.12367
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssb.12367
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssb.12367?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hallin, Marc & Lu, Zudi & Tran, Lanh T., 2004. "Kernel density estimation for spatial processes: the L1 theory," Journal of Multivariate Analysis, Elsevier, vol. 88(1), pages 61-75, January.
    2. Jenish, Nazgul, 2012. "Nonparametric spatial regression under near-epoch dependence," Journal of Econometrics, Elsevier, vol. 167(1), pages 224-239.
    3. HÄRDLE, Wolfgang & VIEU, Philippe, 1992. "Kernel regression smoothing of time series," LIDAM Reprints CORE 981, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Jun Zhu & Hsin‐Cheng Huang & Perla E. Reyes, 2010. "On selection of spatial linear models for lattice data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 389-402, June.
    5. Robinson, P.M., 2011. "Asymptotic theory for nonparametric regression with spatial data," Journal of Econometrics, Elsevier, vol. 165(1), pages 5-19.
    6. Abramson, Ian S., 1982. "Arbitrariness of the pilot estimator in adaptive kernel methods," Journal of Multivariate Analysis, Elsevier, vol. 12(4), pages 562-567, December.
    7. Xia, Yingcun & Li, W. K., 2002. "Asymptotic Behavior of Bandwidth Selected by the Cross-Validation Method for Local Polynomial Fitting," Journal of Multivariate Analysis, Elsevier, vol. 83(2), pages 265-287, November.
    8. Peter Robinson, 2011. "Asymptotic theory for nonparametric regression with spatial data," CeMMAP working papers CWP11/11, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    9. Mammen, Enno, 1990. "A short note on optimal bandwidth selection for kernel estimators," Statistics & Probability Letters, Elsevier, vol. 9(1), pages 23-25, January.
    10. Marc Hallin & Zudi Lu & Lanh T. Tran, 2001. "Density estimation for spatial linear processes," ULB Institutional Repository 2013/2109, ULB -- Universite Libre de Bruxelles.
    11. Jones, M. C., 1991. "The roles of ISE and MISE in density estimation," Statistics & Probability Letters, Elsevier, vol. 12(1), pages 51-56, July.
    12. Tran, Lanh Tat, 1990. "Kernel density estimation on random fields," Journal of Multivariate Analysis, Elsevier, vol. 34(1), pages 37-53, July.
    13. Gao, Jiti, 2007. "Nonlinear time series: semiparametric and nonparametric methods," MPRA Paper 39563, University Library of Munich, Germany, revised 01 Sep 2007.
    14. Zudi Lu & Dag Tjøstheim, 2014. "Nonparametric Estimation of Probability Density Functions for Irregularly Observed Spatial Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1546-1564, December.
    15. Michel Harel & Jean-François Lenain & Joseph Ngatchou-Wandji, 2016. "Asymptotic behaviour of binned kernel density estimators for locally non-stationary random fields," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 296-321, June.
    16. Yanbing Zheng & Jun Zhu & Anindya Roy, 2010. "Nonparametric Bayesian inference for the spectral density function of a random field," Biometrika, Biometrika Trust, vol. 97(1), pages 238-245.
    17. Marc Hallin & Zudi Lu & Lanh T. Tran, 2004. "Local linear spatial regression," ULB Institutional Repository 2013/2131, ULB -- Universite Libre de Bruxelles.
    18. Wolfgang Härdle & Philippe Vieu, 1992. "Kernel Regression Smoothing Of Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 13(3), pages 209-232, May.
    19. del Rio, Alejandro Quintela, 1996. "Comparison of bandwidth selectors in nonparametric regression under dependence," Computational Statistics & Data Analysis, Elsevier, vol. 21(5), pages 563-580, May.
    20. Gao, Jiti & Lu, Zudi & Tjøstheim, Dag, 2008. "Moment inequalities for spatial processes," Statistics & Probability Letters, Elsevier, vol. 78(6), pages 687-697, April.
    21. Marc Hallin & Michel Carbon & Lanh T. Tran, 1996. "Kernel density estimation on random fields: the L1 theory," ULB Institutional Repository 2013/2065, ULB -- Universite Libre de Bruxelles.
    22. Kim, Tae Yoon & Cox, Denis D., 1997. "A Study on Bandwidth Selection in Density Estimation under Dependence," Journal of Multivariate Analysis, Elsevier, vol. 62(2), pages 190-203, August.
    23. Robinson, Peter, 2008. "Developments in the analysis of spatial data," LSE Research Online Documents on Economics 25473, London School of Economics and Political Science, LSE Library.
    24. Marron, James Stephen & Härdle, Wolfgang, 1986. "Random approximations to some measures of accuracy in nonparametric curve estimation," Journal of Multivariate Analysis, Elsevier, vol. 20(1), pages 91-113, October.
    25. Cao, Ricardo & Cuevas, Antonio & Gonzalez Manteiga, Wensceslao, 1994. "A comparative study of several smoothing methods in density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 17(2), pages 153-176, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Rongmao & Chan, Ngai Hang & Chi, Changxiong, 2023. "Nonparametric testing for the specification of spatial trend functions," Journal of Multivariate Analysis, Elsevier, vol. 196(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amiri, Aboubacar & Dabo-Niang, Sophie, 2018. "Density estimation over spatio-temporal data streams," Econometrics and Statistics, Elsevier, vol. 5(C), pages 148-170.
    2. Kuangyu Wen & Ximing Wu & David J. Leatham, 2021. "Spatially Smoothed Kernel Densities with Application to Crop Yield Distributions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 349-366, September.
    3. Jenish, Nazgul, 2012. "Nonparametric spatial regression under near-epoch dependence," Journal of Econometrics, Elsevier, vol. 167(1), pages 224-239.
    4. Kurisu, Daisuke, 2019. "On nonparametric inference for spatial regression models under domain expanding and infill asymptotics," Statistics & Probability Letters, Elsevier, vol. 154(C), pages 1-1.
    5. Gao, Jiti & Lu, Zudi & Tjostheim, Dag, 2003. "Estimation in semiparametric spatial regression," MPRA Paper 11979, University Library of Munich, Germany, revised Jul 2005.
    6. Mohamed El Machkouri, 2011. "Asymptotic normality of the Parzen–Rosenblatt density estimator for strongly mixing random fields," Statistical Inference for Stochastic Processes, Springer, vol. 14(1), pages 73-84, February.
    7. Zudi Lu & Dag Johan Steinskog & Dag Tjøstheim & Qiwei Yao, 2009. "Adaptively varying‐coefficient spatiotemporal models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(4), pages 859-880, September.
    8. Tang Qingguo, 2015. "Robust estimation for spatial semiparametric varying coefficient partially linear regression," Statistical Papers, Springer, vol. 56(4), pages 1137-1161, November.
    9. Tang Qingguo & Cheng Longsheng, 2010. "B-spline estimation for spatial data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(2), pages 197-217.
    10. Liangjun Su & Xi Qu, 2017. "Specification Test for Spatial Autoregressive Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(4), pages 572-584, October.
    11. Sophie Dabo-Niang & Anne-Françoise Yao, 2013. "Kernel spatial density estimation in infinite dimension space," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(1), pages 19-52, January.
    12. Al-Sulami, Dawlah & Jiang, Zhenyu & Lu, Zudi & Zhu, Jun, 2017. "Estimation for semiparametric nonlinear regression of irregularly located spatial time-series data," Econometrics and Statistics, Elsevier, vol. 2(C), pages 22-35.
    13. Li, Linyuan, 2015. "Nonparametric adaptive density estimation on random fields using wavelet method," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 346-355.
    14. Mustapha Rachdi & Ali Laksaci & Noriah M. Al-Kandari, 2022. "Expectile regression for spatial functional data analysis (sFDA)," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(5), pages 627-655, July.
    15. Liliana Forzani & Ricardo Fraiman & Pamela Llop, 2013. "Density estimation for spatial-temporal models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 321-342, June.
    16. Zhengyan Lin & Degui Li & Jiti Gao, 2009. "Local Linear M‐estimation in non‐parametric spatial regression," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(3), pages 286-314, May.
    17. Robinson, P.M., 2011. "Asymptotic theory for nonparametric regression with spatial data," Journal of Econometrics, Elsevier, vol. 165(1), pages 5-19.
    18. Tang Qingguo, 2013. "B-spline estimation for semiparametric varying-coefficient partially linear regression with spatial data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(2), pages 361-378, June.
    19. Sophie Dabo-Niang & Sidi Ould-Abdi & Ahmedoune Ould-Abdi & Aliou Diop, 2014. "Consistency of a nonparametric conditional mode estimator for random fields," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 1-39, March.
    20. Kangning Wang, 2018. "Variable selection for spatial semivarying coefficient models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(2), pages 323-351, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:82:y:2020:i:3:p:817-840. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.