IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v26y2017i2d10.1007_s11749-016-0508-0.html
   My bibliography  Save this article

Marginal integration M-estimators for additive models

Author

Listed:
  • Graciela Boente

    (Universidad de Buenos Aires and IMAS, CONICET, Ciudad Universitaria)

  • Alejandra Martínez

    (Universidad de Buenos Aires and IMAS, CONICET, Ciudad Universitaria)

Abstract

Additive regression models have a long history in multivariate non-parametric regression. They provide a model in which the regression function is decomposed as a sum of functions, each of them depending only on a single explanatory variable. The advantage of additive models over general non-parametric regression models is that they allow to obtain estimators converging at the optimal univariate rate avoiding the so-called curse of dimensionality. Beyond backfitting, marginal integration is a common procedure to estimate each component in additive models. In this paper, we propose a robust estimator of the additive components which combines local polynomials on the component to be estimated with the marginal integration procedure. The proposed estimators are consistent and asymptotically normally distributed. A simulation study allows to show the advantage of the proposal over the classical one when outliers are present in the responses, leading to estimators with good robustness and efficiency properties.

Suggested Citation

  • Graciela Boente & Alejandra Martínez, 2017. "Marginal integration M-estimators for additive models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(2), pages 231-260, June.
  • Handle: RePEc:spr:testjl:v:26:y:2017:i:2:d:10.1007_s11749-016-0508-0
    DOI: 10.1007/s11749-016-0508-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-016-0508-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-016-0508-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ana Bianco & Graciela Boente, 2007. "Robust estimators under semi‐parametric partly linear autoregression: Asymptotic behaviour and bandwidth selection," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(2), pages 274-306, March.
    2. Boente, Graciela & Fraiman, Ricardo, 1989. "Robust nonparametric regression estimation," Journal of Multivariate Analysis, Elsevier, vol. 29(2), pages 180-198, May.
    3. J. P. Nielsen & O. B. Linton, 1998. "An optimization interpretation of integration and back‐fitting estimators for separable nonparametric models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(1), pages 217-222.
    4. Chen, R. & Härdle, Wolfgang & Linton, O. B. & Severance-Lossin, E., 1995. "Nonparametric Estimation of Additive Seperable Regression Models," SFB 373 Discussion Papers 1995,50, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    5. Kong, Efang & Linton, Oliver & Xia, Yingcun, 2010. "Uniform Bahadur Representation For Local Polynomial Estimates Of M-Regression And Its Application To The Additive Model," Econometric Theory, Cambridge University Press, vol. 26(5), pages 1529-1564, October.
    6. Baek, Jangsun & Wehrly, Thomas E., 1993. "Kernel estimation for additive models under dependence," Stochastic Processes and their Applications, Elsevier, vol. 47(1), pages 95-112, August.
    7. Hengartner, Nicolas W. & Sperlich, Stefan, 2005. "Rate optimal estimation with the integration method in the presence of many covariates," Journal of Multivariate Analysis, Elsevier, vol. 95(2), pages 246-272, August.
    8. Stefan Sperlich & Oliver Linton & Wolfgang Härdle, 1999. "Integration and backfitting methods in additive models-finite sample properties and comparison," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 8(2), pages 419-458, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Graciela Boente & Alejandra Martínez & Matías Salibián-Barrera, 2017. "Robust estimators for additive models using backfitting," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(4), pages 744-767, October.
    2. Boente, Graciela & Vahnovan, Alejandra, 2017. "Robust estimators in semi-functional partial linear regression models," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 59-84.
    3. Zhao, Ge & Ma, Yanyuan, 2016. "Robust nonparametric kernel regression estimator," Statistics & Probability Letters, Elsevier, vol. 116(C), pages 72-79.
    4. Stefan Sperlich, 2014. "On the choice of regularization parameters in specification testing: a critical discussion," Empirical Economics, Springer, vol. 47(2), pages 427-450, September.
    5. Boente, Graciela & Pardo-Fernández, Juan Carlos, 2016. "Robust testing for superiority between two regression curves," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 151-168.
    6. Boente, Graciela & Ruiz, Marcelo & Zamar, Ruben H., 2012. "Bandwidth choice for robust nonparametric scale function estimation," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1594-1608.
    7. Joel L. Horowitz, 2012. "Nonparametric additive models," CeMMAP working papers CWP20/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Patrick Saart & Jiti Gao & Nam Hyun Kim, 2014. "Semiparametric methods in nonlinear time series analysis: a selective review," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(1), pages 141-169, March.
    9. Degui Li & Oliver Linton & Zudi Lu, 2012. "A Flexible Semiparametric Model for Time Series," Monash Econometrics and Business Statistics Working Papers 17/12, Monash University, Department of Econometrics and Business Statistics.
    10. Jia-Young Michael Fu & Joel L. Horowitz & Matthias Parey, 2015. "Testing exogeneity in nonparametric instrumental variables identified by conditional quantile restrictions," CeMMAP working papers 68/15, Institute for Fiscal Studies.
    11. Mammen, Enno & Rothe, Christoph & Schienle, Melanie, 2016. "Semiparametric Estimation With Generated Covariates," Econometric Theory, Cambridge University Press, vol. 32(5), pages 1140-1177, October.
    12. Guo, Zheng-Feng & Shintani, Mototsugu, 2011. "Nonparametric lag selection for nonlinear additive autoregressive models," Economics Letters, Elsevier, vol. 111(2), pages 131-134, May.
    13. Guillermo Henry & Daniela Rodriguez, 2009. "Robust nonparametric regression on Riemannian manifolds," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(5), pages 611-628.
    14. Joel L. Horowitz, 2012. "Nonparametric additive models," CeMMAP working papers 20/12, Institute for Fiscal Studies.
    15. Li, Degui & Linton, Oliver & Lu, Zudi, 2015. "A flexible semiparametric forecasting model for time series," Journal of Econometrics, Elsevier, vol. 187(1), pages 345-357.
    16. Krishna Pendakur & Stefan Sperlich, 2010. "Semiparametric estimation of consumer demand systems in real expenditure," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(3), pages 420-457.
    17. Fan, Yanqin & Guerre, Emmanuel & Zhu, Dongming, 2017. "Partial identification of functionals of the joint distribution of “potential outcomes”," Journal of Econometrics, Elsevier, vol. 197(1), pages 42-59.
    18. Berthold R. Haag, 2008. "Non‐parametric Regression Tests Using Dimension Reduction Techniques," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(4), pages 719-738, December.
    19. Gheriballah, Abdelkader & Laksaci, Ali & Sekkal, Soumeya, 2013. "Nonparametric M-regression for functional ergodic data," Statistics & Probability Letters, Elsevier, vol. 83(3), pages 902-908.
    20. Li, Qi & Hsiao, Cheng & Zinn, Joel, 2003. "Consistent specification tests for semiparametric/nonparametric models based on series estimation methods," Journal of Econometrics, Elsevier, vol. 112(2), pages 295-325, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:26:y:2017:i:2:d:10.1007_s11749-016-0508-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.