IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v178y2023ics0167947322001918.html
   My bibliography  Save this article

A robust spline approach in partially linear additive models

Author

Listed:
  • Boente, Graciela
  • Martínez, Alejandra Mercedes

Abstract

Partially linear additive models generalize linear regression models by assuming that the relationship between the response and a set of explanatory variables is linear on some of the covariates, while the other ones enter into the model through unknown univariate smooth functions. The harmful effect of outliers either in the residuals or in the covariates involved in the linear component has been described in the situation of partially linear models, that is, when only one nonparametric component is involved. When dealing with additive components, the problem of providing reliable estimators when atypical data arise is of practical importance motivating the need of robust procedures. Based on this fact, a family of robust estimators for partially linear additive models that combines B-splines with robust linear MM-regression estimators is proposed. Under mild assumptions, consistency results and rates of convergence for the proposed estimators are derived. Furthermore, the asymptotic normality for the linear regression estimators is obtained. A Monte Carlo study is carried out to compare, under different models and contamination schemes, the performance of the robust MM-proposal based on B-splines with its classical counterpart and also with a quantile approach. The obtained results show the benefits of using the robust MM-approach. The analysis of a real data set illustrates the usefulness of the proposed method.

Suggested Citation

  • Boente, Graciela & Martínez, Alejandra Mercedes, 2023. "A robust spline approach in partially linear additive models," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
  • Handle: RePEc:eee:csdana:v:178:y:2023:i:c:s0167947322001918
    DOI: 10.1016/j.csda.2022.107611
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947322001918
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2022.107611?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hardle, Wolfgang & LIang, Hua & Gao, Jiti, 2000. "Partially linear models," MPRA Paper 39562, University Library of Munich, Germany, revised 01 Sep 2000.
    2. Harrison, David Jr. & Rubinfeld, Daniel L., 1978. "Hedonic housing prices and the demand for clean air," Journal of Environmental Economics and Management, Elsevier, vol. 5(1), pages 81-102, March.
    3. Shujie Ma & Jeffrey S. Racine & Lijian Yang, 2015. "Spline Regression in the Presence of Categorical Predictors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(5), pages 705-717, August.
    4. Boente, Graciela & Salibian-Barrera, Matías & Vena, Pablo, 2020. "Robust estimation for semi-functional linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    5. Racine, Jeff & Li, Qi, 2004. "Nonparametric estimation of regression functions with both categorical and continuous data," Journal of Econometrics, Elsevier, vol. 119(1), pages 99-130, March.
    6. Hua Liang & Sally W. Thurston & David Ruppert & Tatiyana Apanasovich & Russ Hauser, 2008. "Additive partial linear models with measurement errors," Biometrika, Biometrika Trust, vol. 95(3), pages 667-678.
    7. Ying Zhang & Lei Hua & Jian Huang, 2010. "A Spline‐Based Semiparametric Maximum Likelihood Estimation Method for the Cox Model with Interval‐Censored Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(2), pages 338-354, June.
    8. Boente, Graciela & Fraiman, Ricardo, 1989. "Robust nonparametric regression estimation," Journal of Multivariate Analysis, Elsevier, vol. 29(2), pages 180-198, May.
    9. Guo, Jie & Tang, Manlai & Tian, Maozai & Zhu, Kai, 2013. "Variable selection in high-dimensional partially linear additive models for composite quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 65(C), pages 56-67.
    10. Manzan, Sebastiano & Zerom, Dawit, 2005. "Kernel estimation of a partially linear additive model," Statistics & Probability Letters, Elsevier, vol. 72(4), pages 313-322, May.
    11. Li, Qi, 2000. "Efficient Estimation of Additive Partially Linear Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 41(4), pages 1073-1092, November.
    12. Xuming He, 2002. "Estimation in a semiparametric model for longitudinal data with unspecified dependence structure," Biometrika, Biometrika Trust, vol. 89(3), pages 579-590, August.
    13. Newey, Whitney K., 1997. "Convergence rates and asymptotic normality for series estimators," Journal of Econometrics, Elsevier, vol. 79(1), pages 147-168, July.
    14. Jing Wang & Lijian Yang, 2009. "Efficient and fast spline-backfitted kernel smoothing of additive models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(3), pages 663-690, September.
    15. Graciela Boente & Daniela Rodriguez & Pablo Vena, 2020. "Robust estimators in a generalized partly linear regression model under monotony constraints," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 50-89, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    2. Rui Li & Yuanyuan Zhang, 2021. "Two-stage estimation and simultaneous confidence band in partially nonlinear additive model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(8), pages 1109-1140, November.
    3. Boente, Graciela & Vahnovan, Alejandra, 2017. "Robust estimators in semi-functional partial linear regression models," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 59-84.
    4. Chuan-hua Wei & Chunling Liu, 2012. "Statistical inference on semi-parametric partial linear additive models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 809-823, December.
    5. Li, Qi & Yang, Jian & Hsiao, Cheng & Chang, Young-Jae, 2005. "The relationship between stock returns and volatility in international stock markets," Journal of Empirical Finance, Elsevier, vol. 12(5), pages 650-665, December.
    6. Lu Lin & Lili Liu & Xia Cui & Kangning Wang, 2021. "A generalized semiparametric regression and its efficient estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 1-24, March.
    7. Huang, Zhensheng & Pang, Zhen & Hu, Tao, 2013. "Testing structural change in partially linear single-index models with error-prone linear covariates," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 121-133.
    8. Graciela Boente & Daniela Rodriguez & Pablo Vena, 2020. "Robust estimators in a generalized partly linear regression model under monotony constraints," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 50-89, March.
    9. Zhang, Yuanqing & Sun, Yanqing, 2015. "Estimation of partially specified dynamic spatial panel data models with fixed-effects," Regional Science and Urban Economics, Elsevier, vol. 51(C), pages 37-46.
    10. Zhang, Jun & Zhou, Yan & Lin, Bingqing & Yu, Yao, 2017. "Estimation and hypothesis test on partial linear models with additive distortion measurement errors," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 114-128.
    11. Xin Geng & Carlos Martins-Filho & Feng Yao, 2015. "Estimation of a Partially Linear Regression in Triangular Systems," Working Papers 15-46, Department of Economics, West Virginia University.
    12. Dong, Chaohua & Gao, Jiti & Linton, Oliver, 2023. "High dimensional semiparametric moment restriction models," Journal of Econometrics, Elsevier, vol. 232(2), pages 320-345.
    13. Boente, Graciela & Salibian-Barrera, Matías & Vena, Pablo, 2020. "Robust estimation for semi-functional linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    14. Zhou, Ling & Lin, Huazhen & Chen, Kani & Liang, Hua, 2019. "Efficient estimation and computation of parameters and nonparametric functions in generalized semi/non-parametric regression models," Journal of Econometrics, Elsevier, vol. 213(2), pages 593-607.
    15. Feng Yao & Junsen Zhang, 2015. "Efficient kernel-based semiparametric IV estimation with an application to resolving a puzzle on the estimates of the return to schooling," Empirical Economics, Springer, vol. 48(1), pages 253-281, February.
    16. Germán Aneiros & Philippe Vieu, 2015. "Partial linear modelling with multi-functional covariates," Computational Statistics, Springer, vol. 30(3), pages 647-671, September.
    17. Bianco, Ana M. & Boente, Graciela & González-Manteiga, Wenceslao & Pérez-González, Ana, 2015. "Robust inference in partially linear models with missing responses," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 88-98.
    18. Xiaohong Chen & . . & Yixiao Sun, 2012. "Sieve inference on semi-nonparametric time series models," CeMMAP working papers 06/12, Institute for Fiscal Studies.
    19. Chuanhua Wei & Xiaonan Wang, 2016. "Liu-type estimator in semiparametric partially linear additive models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(3), pages 459-468, September.
    20. Holland, Ashley D., 2017. "Penalized spline estimation in the partially linear model," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 211-235.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:178:y:2023:i:c:s0167947322001918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.