IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v51y2001i2p197-206.html
   My bibliography  Save this article

Inequalities for the moments of Wiener integrals with respect to a fractional Brownian motion

Author

Listed:
  • Mémin, Jean
  • Mishura, Yulia
  • Valkeila, Esko

Abstract

We study the possibility to control the moments of Wiener integrals of fractional Brownian motion with respect to the Lp- norm of the integrand. It turns out that when the self-similarity index , we can have only an upper inequality, and when we can have only a lower inequality.

Suggested Citation

  • Mémin, Jean & Mishura, Yulia & Valkeila, Esko, 2001. "Inequalities for the moments of Wiener integrals with respect to a fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 51(2), pages 197-206, January.
  • Handle: RePEc:eee:stapro:v:51:y:2001:i:2:p:197-206
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(00)00157-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Novikov, Alexander & Valkeila, Esko, 1999. "On some maximal inequalities for fractional Brownian motions," Statistics & Probability Letters, Elsevier, vol. 44(1), pages 47-54, August.
    2. L. C. G. Rogers, 1997. "Arbitrage with Fractional Brownian Motion," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 95-105, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ehsan Azmoodeh & Esko Valkeila, 2013. "Spectral characterization of the quadratic variation of mixed Brownian–fractional Brownian motion," Statistical Inference for Stochastic Processes, Springer, vol. 16(2), pages 97-112, July.
    2. Lucian Maticiuc & Tianyang Nie, 2015. "Fractional Backward Stochastic Differential Equations and Fractional Backward Variational Inequalities," Journal of Theoretical Probability, Springer, vol. 28(1), pages 337-395, March.
    3. Marie, Nicolas, 2020. "Nonparametric estimation of the trend in reflected fractional SDE," Statistics & Probability Letters, Elsevier, vol. 158(C).
    4. Fan, Xiliang & Yuan, Chenggui, 2016. "Lyapunov exponents of PDEs driven by fractional noise with Markovian switching," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 39-50.
    5. Nualart, David & Pérez-Abreu, Victor, 2014. "On the eigenvalue process of a matrix fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 124(12), pages 4266-4282.
    6. Radchenko, Vadym M., 2007. "Besov regularity of stochastic measures," Statistics & Probability Letters, Elsevier, vol. 77(8), pages 822-825, April.
    7. B. L. S. Prakasa Rao, 2021. "Nonparametric Estimation for Stochastic Differential Equations Driven by Mixed Fractional Brownian Motion with Random Effects," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 554-568, August.
    8. Balan, Raluca M. & Tudor, Ciprian A., 2010. "The stochastic wave equation with fractional noise: A random field approach," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2468-2494, December.
    9. Čoupek, P. & Maslowski, B., 2017. "Stochastic evolution equations with Volterra noise," Stochastic Processes and their Applications, Elsevier, vol. 127(3), pages 877-900.
    10. Yan, Litan, 2004. "Maximal inequalities for the iterated fractional integrals," Statistics & Probability Letters, Elsevier, vol. 69(1), pages 69-79, August.
    11. Slominski, Leszek & Ziemkiewicz, Bartosz, 2005. "Inequalities for the norms of integrals with respect to a fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 73(1), pages 79-90, June.
    12. Raluca M. Balan & Ciprian A. Tudor, 2010. "Stochastic Heat Equation with Multiplicative Fractional-Colored Noise," Journal of Theoretical Probability, Springer, vol. 23(3), pages 834-870, September.
    13. Fan, Xiliang & Yu, Ting & Yuan, Chenggui, 2023. "Asymptotic behaviors for distribution dependent SDEs driven by fractional Brownian motions," Stochastic Processes and their Applications, Elsevier, vol. 164(C), pages 383-415.
    14. Slominski, Leszek & Ziemkiewicz, Bartosz, 2009. "On weak approximations of integrals with respect to fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 79(4), pages 543-552, February.
    15. Radchenko, Vadym, 2019. "Averaging principle for the heat equation driven by a general stochastic measure," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 224-230.
    16. Dzhaparidze, Kacha & van Zanten, Harry & Zareba, Pawel, 2005. "Representations of fractional Brownian motion using vibrating strings," Stochastic Processes and their Applications, Elsevier, vol. 115(12), pages 1928-1953, December.
    17. Mishura, Yuliya & Shevchenko, Georgiy, 2017. "Small ball properties and representation results," Stochastic Processes and their Applications, Elsevier, vol. 127(1), pages 20-36.
    18. Rang, Guanglin, 2020. "From directed polymers in spatial-correlated environment to stochastic heat equations driven by fractional noise in 1+1 dimensions," Stochastic Processes and their Applications, Elsevier, vol. 130(6), pages 3408-3444.
    19. David Nualart & Youssef Ouknine, 2003. "Besov Regularity of Stochastic Integrals with Respect to the Fractional Brownian Motion with Parameter H > 1/2," Journal of Theoretical Probability, Springer, vol. 16(2), pages 451-470, April.
    20. Fan, Xiliang & Huang, Xing & Suo, Yongqiang & Yuan, Chenggui, 2022. "Distribution dependent SDEs driven by fractional Brownian motions," Stochastic Processes and their Applications, Elsevier, vol. 151(C), pages 23-67.
    21. M. Mishra & B. Prakasa Rao, 2011. "Nonparametric estimation of trend for stochastic differential equations driven by fractional Brownian motion," Statistical Inference for Stochastic Processes, Springer, vol. 14(2), pages 101-109, May.
    22. Mahmoudi, Fatemeh & Tahmasebi, Mahdieh, 2022. "The convergence of a numerical scheme for additive fractional stochastic delay equations with H>12," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 219-231.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Turvey, Calum G., 2001. "Random Walks And Fractal Structures In Agricultural Commodity Futures Prices," Working Papers 34151, University of Guelph, Department of Food, Agricultural and Resource Economics.
    2. Zhang, Wei-Guo & Li, Zhe & Liu, Yong-Jun, 2018. "Analytical pricing of geometric Asian power options on an underlying driven by a mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 402-418.
    3. Gapeev, Pavel V., 2004. "On arbitrage and Markovian short rates in fractional bond markets," Statistics & Probability Letters, Elsevier, vol. 70(3), pages 211-222, December.
    4. Ballestra, Luca Vincenzo & Pacelli, Graziella & Radi, Davide, 2016. "A very efficient approach for pricing barrier options on an underlying described by the mixed fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 240-248.
    5. Dorje Brody & Joanna Syroka & Mihail Zervos, 2002. "Dynamical pricing of weather derivatives," Quantitative Finance, Taylor & Francis Journals, vol. 2(3), pages 189-198.
    6. Rostek, Stefan & Schöbel, Rainer, 2006. "Risk preference based option pricing in a fractional Brownian market," Tübinger Diskussionsbeiträge 299, University of Tübingen, School of Business and Economics.
    7. Loch-Olszewska, Hanna, 2019. "Properties and distribution of the dynamical functional for the fractional Gaussian noise," Applied Mathematics and Computation, Elsevier, vol. 356(C), pages 252-271.
    8. Chr. Framstad, Nils, 2011. "On free lunches in random walk markets with short-sale constraints and small transaction costs, and weak convergence to Gaussian continuous-time processes," Memorandum 20/2011, Oslo University, Department of Economics.
    9. Matthieu Garcin, 2021. "Forecasting with fractional Brownian motion: a financial perspective," Papers 2105.09140, arXiv.org, revised Sep 2021.
    10. Akihiko Inoue & Yumiharu Nakano, 2005. "Optimal long term investment model with memory," Papers math/0506621, arXiv.org, revised May 2006.
    11. Vasile Brătian & Ana-Maria Acu & Camelia Oprean-Stan & Emil Dinga & Gabriela-Mariana Ionescu, 2021. "Efficient or Fractal Market Hypothesis? A Stock Indexes Modelling Using Geometric Brownian Motion and Geometric Fractional Brownian Motion," Mathematics, MDPI, vol. 9(22), pages 1-20, November.
    12. Onali, Enrico & Goddard, John, 2011. "Are European equity markets efficient? New evidence from fractal analysis," International Review of Financial Analysis, Elsevier, vol. 20(2), pages 59-67, April.
    13. Mishura, Yuliya & Shevchenko, Georgiy & Valkeila, Esko, 2013. "Random variables as pathwise integrals with respect to fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 123(6), pages 2353-2369.
    14. Aleksandr Kuklin & Gennadiy Bystray & Sergey Okhotnikov & Elena Chistova, 2015. "Economic Tomography: Opportunity to Foresee and Respond to Socio-Economic Crises," Economy of region, Centre for Economic Security, Institute of Economics of Ural Branch of Russian Academy of Sciences, vol. 1(4), pages 40-53.
    15. Foad Shokrollahi, 2016. "Subdiffusive fractional Brownian motion regime for pricing currency options under transaction costs," Papers 1612.06665, arXiv.org, revised Aug 2017.
    16. repec:hal:wpaper:hal-03284660 is not listed on IDEAS
    17. Beran, Jan, 1999. "SEMIFAR Models - A Semiparametric Framework for Modelling Trends, Long Range Dependence and Nonstationarity," CoFE Discussion Papers 99/16, University of Konstanz, Center of Finance and Econometrics (CoFE).
    18. Dorival Le~ao & Alberto Ohashi & Francesco Russo, 2017. "Discrete-type approximations for non-Markovian optimal stopping problems: Part I," Papers 1707.05234, arXiv.org, revised Jun 2019.
    19. Xiyue Han & Alexander Schied, 2021. "The roughness exponent and its model-free estimation," Papers 2111.10301, arXiv.org, revised Jun 2024.
    20. Cheridito, Patrick, 2004. "Gaussian moving averages, semimartingales and option pricing," Stochastic Processes and their Applications, Elsevier, vol. 109(1), pages 47-68, January.
    21. José Carlos Ramirez Sánchez, 2004. "Usos y limitaciones de los procesos estocásticos en el tratamiento de distribuciones de rendimientos con colas gordas," Revista de Analisis Economico – Economic Analysis Review, Universidad Alberto Hurtado/School of Economics and Business, vol. 19(1), pages 51-76, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:51:y:2001:i:2:p:197-206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.