IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v356y2019icp252-271.html
   My bibliography  Save this article

Properties and distribution of the dynamical functional for the fractional Gaussian noise

Author

Listed:
  • Loch-Olszewska, Hanna

Abstract

The fractional Brownian motion and its increment process, the fractional Gaussian noise (fGn), are highly popular models for data exhibiting anomalous diffusion. In this paper, an explicit formula for the dynamical functional, a tool for testing ε-ergodicity breaking and a statistic helpful in the process identification, is provided for the fractional Gaussian noise. Its basic characteristics are derived and the distribution of its single trajectory estimator is studied. Additionally, the sensibility of the convergence of the dynamical functional to the Hurst parameter H is analysed.

Suggested Citation

  • Loch-Olszewska, Hanna, 2019. "Properties and distribution of the dynamical functional for the fractional Gaussian noise," Applied Mathematics and Computation, Elsevier, vol. 356(C), pages 252-271.
  • Handle: RePEc:eee:apmaco:v:356:y:2019:i:c:p:252-271
    DOI: 10.1016/j.amc.2019.03.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300319302450
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2019.03.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Titiwat Sungkaworn & Marie-Lise Jobin & Krzysztof Burnecki & Aleksander Weron & Martin J. Lohse & Davide Calebiro, 2017. "Single-molecule imaging reveals receptor–G protein interactions at cell surface hot spots," Nature, Nature, vol. 550(7677), pages 543-547, October.
    2. L. C. G. Rogers, 1997. "Arbitrage with Fractional Brownian Motion," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 95-105, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Janczura, Joanna & Burnecki, Krzysztof & Muszkieta, Monika & Stanislavsky, Aleksander & Weron, Aleksander, 2022. "Classification of random trajectories based on the fractional Lévy stable motion," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Turvey, Calum G., 2001. "Random Walks And Fractal Structures In Agricultural Commodity Futures Prices," Working Papers 34151, University of Guelph, Department of Food, Agricultural and Resource Economics.
    2. Zhang, Wei-Guo & Li, Zhe & Liu, Yong-Jun, 2018. "Analytical pricing of geometric Asian power options on an underlying driven by a mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 402-418.
    3. Gapeev, Pavel V., 2004. "On arbitrage and Markovian short rates in fractional bond markets," Statistics & Probability Letters, Elsevier, vol. 70(3), pages 211-222, December.
    4. Ballestra, Luca Vincenzo & Pacelli, Graziella & Radi, Davide, 2016. "A very efficient approach for pricing barrier options on an underlying described by the mixed fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 240-248.
    5. Dorje Brody & Joanna Syroka & Mihail Zervos, 2002. "Dynamical pricing of weather derivatives," Quantitative Finance, Taylor & Francis Journals, vol. 2(3), pages 189-198.
    6. Yong-Seok Kim & Jun-Hee Yeon & Woori Ko & Byung-Chang Suh, 2023. "Two-step structural changes in M3 muscarinic receptor activation rely on the coupled Gq protein cycle," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Rostek, Stefan & Schöbel, Rainer, 2006. "Risk preference based option pricing in a fractional Brownian market," Tübinger Diskussionsbeiträge 299, University of Tübingen, School of Business and Economics.
    8. Marie-Lise Jobin & Sana Siddig & Zsombor Koszegi & Yann Lanoiselée & Vladimir Khayenko & Titiwat Sungkaworn & Christian Werner & Kerstin Seier & Christin Misigaiski & Giovanna Mantovani & Markus Sauer, 2023. "Filamin A organizes γ‑aminobutyric acid type B receptors at the plasma membrane," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Chr. Framstad, Nils, 2011. "On free lunches in random walk markets with short-sale constraints and small transaction costs, and weak convergence to Gaussian continuous-time processes," Memorandum 20/2011, Oslo University, Department of Economics.
    10. Matthieu Garcin, 2021. "Forecasting with fractional Brownian motion: a financial perspective," Papers 2105.09140, arXiv.org, revised Sep 2021.
    11. Akihiko Inoue & Yumiharu Nakano, 2005. "Optimal long term investment model with memory," Papers math/0506621, arXiv.org, revised May 2006.
    12. Vasile Brătian & Ana-Maria Acu & Camelia Oprean-Stan & Emil Dinga & Gabriela-Mariana Ionescu, 2021. "Efficient or Fractal Market Hypothesis? A Stock Indexes Modelling Using Geometric Brownian Motion and Geometric Fractional Brownian Motion," Mathematics, MDPI, vol. 9(22), pages 1-20, November.
    13. Muszkieta, Monika & Janczura, Joanna, 2023. "A compressed sensing approach to interpolation of fractional Brownian trajectories for a single particle tracking experiment," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    14. Onali, Enrico & Goddard, John, 2011. "Are European equity markets efficient? New evidence from fractal analysis," International Review of Financial Analysis, Elsevier, vol. 20(2), pages 59-67, April.
    15. Mishura, Yuliya & Shevchenko, Georgiy & Valkeila, Esko, 2013. "Random variables as pathwise integrals with respect to fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 123(6), pages 2353-2369.
    16. Aleksandr Kuklin & Gennadiy Bystray & Sergey Okhotnikov & Elena Chistova, 2015. "Economic Tomography: Opportunity to Foresee and Respond to Socio-Economic Crises," Economy of region, Centre for Economic Security, Institute of Economics of Ural Branch of Russian Academy of Sciences, vol. 1(4), pages 40-53.
    17. Foad Shokrollahi, 2016. "Subdiffusive fractional Brownian motion regime for pricing currency options under transaction costs," Papers 1612.06665, arXiv.org, revised Aug 2017.
    18. repec:hal:wpaper:hal-03284660 is not listed on IDEAS
    19. Beran, Jan, 1999. "SEMIFAR Models - A Semiparametric Framework for Modelling Trends, Long Range Dependence and Nonstationarity," CoFE Discussion Papers 99/16, University of Konstanz, Center of Finance and Econometrics (CoFE).
    20. Xiyue Han & Alexander Schied, 2021. "The roughness exponent and its model-free estimation," Papers 2111.10301, arXiv.org, revised Jun 2024.
    21. Cheridito, Patrick, 2004. "Gaussian moving averages, semimartingales and option pricing," Stochastic Processes and their Applications, Elsevier, vol. 109(1), pages 47-68, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:356:y:2019:i:c:p:252-271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.