IDEAS home Printed from https://ideas.repec.org/a/eee/finana/v8y1999i1p53-65.html
   My bibliography  Save this article

Estimation of the ARFIMA (p, d, q) fractional differencing parameter (d) using the classical rescaled adjusted range technique

Author

Listed:
  • Ellis, Craig

Abstract

No abstract is available for this item.

Suggested Citation

  • Ellis, Craig, 1999. "Estimation of the ARFIMA (p, d, q) fractional differencing parameter (d) using the classical rescaled adjusted range technique," International Review of Financial Analysis, Elsevier, vol. 8(1), pages 53-65.
  • Handle: RePEc:eee:finana:v:8:y:1999:i:1:p:53-65
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1057-5219(99)00005-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barkoulas, John T. & Baum, Christopher F., 1996. "Long-term dependence in stock returns," Economics Letters, Elsevier, vol. 53(3), pages 253-259, December.
    2. L. C. G. Rogers, 1997. "Arbitrage with Fractional Brownian Motion," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 95-105, January.
    3. Cheung, Yin-Wong, 1993. "Long Memory in Foreign-Exchange Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(1), pages 93-101, January.
    4. Jacobsen, Ben, 1996. "Long term dependence in stock returns," Journal of Empirical Finance, Elsevier, vol. 3(4), pages 393-417, December.
    5. Craig Ellis, 1998. "Modelling the Expected Value of the Classical Rescaled Adjusted Range for Long-Term Dependent Series," Working Paper Series 79, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    6. Hauser, Michael A. & Reschenhofer, Erhard, 1995. "Estimation of the fractionally differencing parameter with the R/S method," Computational Statistics & Data Analysis, Elsevier, vol. 20(5), pages 569-579, November.
    7. Diebold, Francis X. & Rudebusch, Glenn D., 1989. "Long memory and persistence in aggregate output," Journal of Monetary Economics, Elsevier, vol. 24(2), pages 189-209, September.
    8. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manuel Monge & Luis A. Gil-Alana, 2020. "The Lithium Industry and Analysis of the Beta Term Structure of Oil Companies," Risks, MDPI, vol. 8(4), pages 1-17, December.
    2. Batten, Jonathan & Ellis, Craig & Hogan, Warren, 2002. "Scaling the volatility of credit spreads: Evidence from Australian dollar eurobonds," International Review of Financial Analysis, Elsevier, vol. 11(3), pages 331-344.
    3. Ellis, Craig & Wilson, Patrick, 2004. "Another look at the forecast performance of ARFIMA models," International Review of Financial Analysis, Elsevier, vol. 13(1), pages 63-81.
    4. Ding, Liang & Luo, Yi & Lin, Yan & Huang, Yirong, 2021. "Revisiting the relations between Hurst exponent and fractional differencing parameter for long memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koop, Gary & Ley, Eduardo & Osiewalski, Jacek & Steel, Mark F. J., 1997. "Bayesian analysis of long memory and persistence using ARFIMA models," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 149-169.
    2. Geoffrey Ngene & Ann Nduati Mungai & Allen K. Lynch, 2018. "Long-Term Dependency Structure and Structural Breaks: Evidence from the U.S. Sector Returns and Volatility," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-38, June.
    3. Gerlich, Nikolas & Rostek, Stefan, 2015. "Estimating serial correlation and self-similarity in financial time series—A diversification approach with applications to high frequency data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 84-98.
    4. Jr‐Wei Huang & Sharon S. Yang & Chuang‐Chang Chang, 2018. "Modeling temperature behaviors: Application to weather derivative valuation," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(9), pages 1152-1175, September.
    5. Onali, Enrico & Goddard, John, 2011. "Are European equity markets efficient? New evidence from fractal analysis," International Review of Financial Analysis, Elsevier, vol. 20(2), pages 59-67, April.
    6. Patrick K. Asea & Michael J. Dueker, 1995. "Non-monotonic long memory dynamics in black-market premia," Working Papers 1995-003, Federal Reserve Bank of St. Louis.
    7. Ana Pérez & Esther Ruiz, 2002. "Modelos de memoria larga para series económicas y financieras," Investigaciones Economicas, Fundación SEPI, vol. 26(3), pages 395-445, September.
    8. Christopher F. Baum & John Barkoulas, 2006. "Long-memory forecasting of US monetary indices," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(4), pages 291-302.
    9. Goddard, John & Onali, Enrico, 2012. "Self-affinity in financial asset returns," International Review of Financial Analysis, Elsevier, vol. 24(C), pages 1-11.
    10. Jamdee, Sutthisit & Los, Cornelis A., 2007. "Long memory options: LM evidence and simulations," Research in International Business and Finance, Elsevier, vol. 21(2), pages 260-280, June.
    11. Benjamin J. C. Kim & David Karemera, 2006. "Assessing the forecasting accuracy of alternative nominal exchange rate models: the case of long memory," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(5), pages 369-380.
    12. Saadet Kasman & Evrim Turgutlu & A. Duygu Ayhan, 2009. "Long memory in stock returns: evidence from the major emerging Central European stock markets," Applied Economics Letters, Taylor & Francis Journals, vol. 16(17), pages 1763-1768.
    13. Mohanty, Samarendu & Peterson, E. Wesley F. & Smith, Darnell B., 1998. "Fractional Conintegration And The False Rejection Of The Law Of One Price In International Commodity Markets," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 30(2), pages 1-10, December.
    14. Choi, Kyongwook & Zivot, Eric, 2007. "Long memory and structural changes in the forward discount: An empirical investigation," Journal of International Money and Finance, Elsevier, vol. 26(3), pages 342-363, April.
    15. Erhard Reschenhofer & Manveer K. Mangat, 2020. "Reducing the Bias of the Smoothed Log Periodogram Regression for Financial High-Frequency Data," Econometrics, MDPI, vol. 8(4), pages 1-15, October.
    16. Ellis, Craig & Wilson, Patrick, 2004. "Another look at the forecast performance of ARFIMA models," International Review of Financial Analysis, Elsevier, vol. 13(1), pages 63-81.
    17. Hauser, Michael A. & Reschenhofer, Erhard, 1995. "Estimation of the fractionally differencing parameter with the R/S method," Computational Statistics & Data Analysis, Elsevier, vol. 20(5), pages 569-579, November.
    18. Proelss, Juliane & Schweizer, Denis & Seiler, Volker, 2020. "The economic importance of rare earth elements volatility forecasts," International Review of Financial Analysis, Elsevier, vol. 71(C).
    19. van Dijk, Dick & Franses, Philip Hans & Paap, Richard, 2002. "A nonlinear long memory model, with an application to US unemployment," Journal of Econometrics, Elsevier, vol. 110(2), pages 135-165, October.
    20. Hosking, Jonathan R. M., 1996. "Asymptotic distributions of the sample mean, autocovariances, and autocorrelations of long-memory time series," Journal of Econometrics, Elsevier, vol. 73(1), pages 261-284, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finana:v:8:y:1999:i:1:p:53-65. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620166 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.