IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v120y2010i12p2468-2494.html
   My bibliography  Save this article

The stochastic wave equation with fractional noise: A random field approach

Author

Listed:
  • Balan, Raluca M.
  • Tudor, Ciprian A.

Abstract

We consider the linear stochastic wave equation with spatially homogeneous Gaussian noise, which is fractional in time with index H>1/2. We show that the necessary and sufficient condition for the existence of the solution is a relaxation of the condition obtained in Dalang (1999) [10], where the noise is white in time. Under this condition, we show that the solution is L2([Omega])-continuous. Similar results are obtained for the heat equation. Unlike in the white noise case, the necessary and sufficient condition for the existence of the solution in the case of the heat equation is different (and more general) than the one obtained for the wave equation.

Suggested Citation

  • Balan, Raluca M. & Tudor, Ciprian A., 2010. "The stochastic wave equation with fractional noise: A random field approach," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2468-2494, December.
  • Handle: RePEc:eee:spapps:v:120:y:2010:i:12:p:2468-2494
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(10)00192-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mémin, Jean & Mishura, Yulia & Valkeila, Esko, 2001. "Inequalities for the moments of Wiener integrals with respect to a fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 51(2), pages 197-206, January.
    2. Quer-Sardanyons, Lluís & Tindel, Samy, 2007. "The 1-d stochastic wave equation driven by a fractional Brownian sheet," Stochastic Processes and their Applications, Elsevier, vol. 117(10), pages 1448-1472, October.
    3. Nualart, Eulalia & Viens, Frederi, 2009. "The fractional stochastic heat equation on the circle: Time regularity and potential theory," Stochastic Processes and their Applications, Elsevier, vol. 119(5), pages 1505-1540, May.
    4. Dalang, Robert C. & Hou, Qiang, 1997. "On Markov properties of Lévy waves in two dimensions," Stochastic Processes and their Applications, Elsevier, vol. 72(2), pages 265-287, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yinghan & Yang, Xiaoyuan, 2015. "Fractional stochastic Volterra equation perturbed by fractional Brownian motion," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 20-36.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Quer-Sardanyons, Lluís & Tindel, Samy, 2012. "Pathwise definition of second-order SDEs," Stochastic Processes and their Applications, Elsevier, vol. 122(2), pages 466-497.
    2. Radchenko, Vadym M., 2007. "Besov regularity of stochastic measures," Statistics & Probability Letters, Elsevier, vol. 77(8), pages 822-825, April.
    3. Yan, Litan, 2004. "Maximal inequalities for the iterated fractional integrals," Statistics & Probability Letters, Elsevier, vol. 69(1), pages 69-79, August.
    4. Mahmoudi, Fatemeh & Tahmasebi, Mahdieh, 2022. "The convergence of a numerical scheme for additive fractional stochastic delay equations with H>12," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 219-231.
    5. Fan, Xiliang & Yuan, Chenggui, 2016. "Lyapunov exponents of PDEs driven by fractional noise with Markovian switching," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 39-50.
    6. David Nualart & Youssef Ouknine, 2003. "Besov Regularity of Stochastic Integrals with Respect to the Fractional Brownian Motion with Parameter H > 1/2," Journal of Theoretical Probability, Springer, vol. 16(2), pages 451-470, April.
    7. M. Mishra & B. Prakasa Rao, 2011. "Nonparametric estimation of trend for stochastic differential equations driven by fractional Brownian motion," Statistical Inference for Stochastic Processes, Springer, vol. 14(2), pages 101-109, May.
    8. Marie, Nicolas, 2020. "Nonparametric estimation of the trend in reflected fractional SDE," Statistics & Probability Letters, Elsevier, vol. 158(C).
    9. Fan, Xiliang & Yu, Ting & Yuan, Chenggui, 2023. "Asymptotic behaviors for distribution dependent SDEs driven by fractional Brownian motions," Stochastic Processes and their Applications, Elsevier, vol. 164(C), pages 383-415.
    10. Dalang, Robert C. & Khoshnevisan, Davar, 2004. "Recurrent lines in two-parameter isotropic stable Lévy sheets," Stochastic Processes and their Applications, Elsevier, vol. 114(1), pages 81-107, November.
    11. Slominski, Leszek & Ziemkiewicz, Bartosz, 2005. "Inequalities for the norms of integrals with respect to a fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 73(1), pages 79-90, June.
    12. Radchenko, Vadym, 2019. "Averaging principle for the heat equation driven by a general stochastic measure," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 224-230.
    13. Raluca M. Balan & Ciprian A. Tudor, 2010. "Stochastic Heat Equation with Multiplicative Fractional-Colored Noise," Journal of Theoretical Probability, Springer, vol. 23(3), pages 834-870, September.
    14. Slominski, Leszek & Ziemkiewicz, Bartosz, 2009. "On weak approximations of integrals with respect to fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 79(4), pages 543-552, February.
    15. Mishura, Yuliya & Shevchenko, Georgiy, 2017. "Small ball properties and representation results," Stochastic Processes and their Applications, Elsevier, vol. 127(1), pages 20-36.
    16. Nualart, Eulalia & Viens, Frederi, 2009. "The fractional stochastic heat equation on the circle: Time regularity and potential theory," Stochastic Processes and their Applications, Elsevier, vol. 119(5), pages 1505-1540, May.
    17. B. L. S. Prakasa Rao, 2021. "Nonparametric Estimation for Stochastic Differential Equations Driven by Mixed Fractional Brownian Motion with Random Effects," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 554-568, August.
    18. Čoupek, P. & Maslowski, B., 2017. "Stochastic evolution equations with Volterra noise," Stochastic Processes and their Applications, Elsevier, vol. 127(3), pages 877-900.
    19. Wei Liu & Kuanhou Tian & Mohammud Foondun, 2017. "On Some Properties of a Class of Fractional Stochastic Heat Equations," Journal of Theoretical Probability, Springer, vol. 30(4), pages 1310-1333, December.
    20. Zhang, Yinghan & Yang, Xiaoyuan, 2015. "Fractional stochastic Volterra equation perturbed by fractional Brownian motion," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 20-36.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:120:y:2010:i:12:p:2468-2494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.