IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v130y2020i6p3408-3444.html
   My bibliography  Save this article

From directed polymers in spatial-correlated environment to stochastic heat equations driven by fractional noise in 1+1 dimensions

Author

Listed:
  • Rang, Guanglin

Abstract

We consider the limit behavior of partition function of directed polymers in random environment, which is represented by a linear model instead of a family of i.i.d.variables in 1+1 dimensions. Under the assumption on the environment that its spatial correlation decays algebraically, using the method developed in Alberts et al. (2014), we show that the scaled partition function, as a process defined on [0,1]×R, converges weakly to the solution to some stochastic heat equations driven by fractional Brownian field. The fractional Hurst parameter is determined by the correlation exponent of the random environment. Here multiple Itô integral with respect to fractional Gaussian field and spectral representation of stationary process are heavily involved.

Suggested Citation

  • Rang, Guanglin, 2020. "From directed polymers in spatial-correlated environment to stochastic heat equations driven by fractional noise in 1+1 dimensions," Stochastic Processes and their Applications, Elsevier, vol. 130(6), pages 3408-3444.
  • Handle: RePEc:eee:spapps:v:130:y:2020:i:6:p:3408-3444
    DOI: 10.1016/j.spa.2019.09.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414919305782
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2019.09.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mémin, Jean & Mishura, Yulia & Valkeila, Esko, 2001. "Inequalities for the moments of Wiener integrals with respect to a fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 51(2), pages 197-206, January.
    2. Song, Jian, 2017. "On a class of stochastic partial differential equations," Stochastic Processes and their Applications, Elsevier, vol. 127(1), pages 37-79.
    3. Alberts, Tom & Clark, Jeremy & Kocić, Saša, 2017. "The intermediate disorder regime for a directed polymer model on a hierarchical lattice," Stochastic Processes and their Applications, Elsevier, vol. 127(10), pages 3291-3330.
    4. Hosking, Jonathan R. M., 1996. "Asymptotic distributions of the sample mean, autocovariances, and autocorrelations of long-memory time series," Journal of Econometrics, Elsevier, vol. 73(1), pages 261-284, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beran, Jan & Feng, Yuanhua, 1999. "Local Polynomial Estimation with a FARIMA-GARCH Error Process," CoFE Discussion Papers 99/08, University of Konstanz, Center of Finance and Econometrics (CoFE).
    2. Giorgio Canarella & Luis A. Gil-Alana & Rangan Gupta & Stephen M. Miller, 2022. "Globalization, long memory, and real interest rate convergence: a historical perspective," Empirical Economics, Springer, vol. 63(5), pages 2331-2355, November.
    3. Baillie, Richard T. & Kapetanios, George & Papailias, Fotis, 2014. "Bandwidth selection by cross-validation for forecasting long memory financial time series," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 129-143.
    4. Leonardo Rocha Souza, 2007. "Temporal Aggregation and Bandwidth selection in estimating long memory," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(5), pages 701-722, September.
    5. Granger, C.W.J. (Clive William John) & Marmol, Francesc, 1998. "The correlogram of a long memory process plus a simple noise," DES - Working Papers. Statistics and Econometrics. WS 9820, Universidad Carlos III de Madrid. Departamento de Estadística.
    6. Wang, Cindy Shin-Huei & Bauwens, Luc & Hsiao, Cheng, 2013. "Forecasting a long memory process subject to structural breaks," Journal of Econometrics, Elsevier, vol. 177(2), pages 171-184.
    7. Giraitis, Liudas & Phillips, Peter C.B., 2012. "Mean and autocovariance function estimation near the boundary of stationarity," Journal of Econometrics, Elsevier, vol. 169(2), pages 166-178.
    8. Bai, Shuyang & Taqqu, Murad S., 2019. "Sensitivity of the Hermite rank," Stochastic Processes and their Applications, Elsevier, vol. 129(3), pages 822-840.
    9. Kyaw, NyoNyo A. & Los, Cornelis A. & Zong, Sijing, 2006. "Persistence characteristics of Latin American financial markets," Journal of Multinational Financial Management, Elsevier, vol. 16(3), pages 269-290, July.
    10. Marie, Nicolas, 2020. "Nonparametric estimation of the trend in reflected fractional SDE," Statistics & Probability Letters, Elsevier, vol. 158(C).
    11. Ole E. Barndorff-Nielsen & Asger Lunde & Neil Shephard & Almut E.D. Veraart, 2014. "Integer-valued Trawl Processes: A Class of Stationary Infinitely Divisible Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(3), pages 693-724, September.
    12. Juan J. Dolado & Jesús Gonzalo & Laura Mayoral, 2005. "What is What? A Simple Time-Domain Test of Long-memory vs. Structural Breaks," Working Papers 258, Barcelona School of Economics.
    13. Dmitrij Celov & Remigijus Leipus & Anne Philippe, 2010. "Asymptotic normality of the mixture density estimator in a disaggregation scheme," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(4), pages 425-442.
    14. Poskitt, D.S. & Grose, Simone D. & Martin, Gael M., 2015. "Higher-order improvements of the sieve bootstrap for fractionally integrated processes," Journal of Econometrics, Elsevier, vol. 188(1), pages 94-110.
    15. Richard T. Baillie & Dooyeon Cho & Seunghwa Rho, 2023. "Approximating long-memory processes with low-order autoregressions: Implications for modeling realized volatility," Empirical Economics, Springer, vol. 64(6), pages 2911-2937, June.
    16. B. L. S. Prakasa Rao, 2021. "Nonparametric Estimation for Stochastic Differential Equations Driven by Mixed Fractional Brownian Motion with Random Effects," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 554-568, August.
    17. Sibbertsen, Philipp & Kramer, Walter, 2006. "The power of the KPSS-test for cointegration when residuals are fractionally integrated," Economics Letters, Elsevier, vol. 91(3), pages 321-324, June.
    18. Wang, Shin-Huei & Vasilakis, Chrysovalantis, 2013. "Recursive predictive tests for structural change of long-memory ARFIMA processes with unknown break points," Economics Letters, Elsevier, vol. 118(2), pages 389-392.
    19. Laura Mayoral, 2007. "Minimum distance estimation of stationary and non-stationary ARFIMA processes," Econometrics Journal, Royal Economic Society, vol. 10(1), pages 124-148, March.
    20. J. Coulon & Y. Malevergne, 2011. "Heterogeneous expectations and long-range correlation of the volatility of asset returns," Quantitative Finance, Taylor & Francis Journals, vol. 11(9), pages 1329-1356, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:130:y:2020:i:6:p:3408-3444. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.