IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2111.10301.html
   My bibliography  Save this paper

The roughness exponent and its model-free estimation

Author

Listed:
  • Xiyue Han
  • Alexander Schied

Abstract

Motivated by pathwise stochastic calculus, we say that a continuous real-valued function $x$ admits the roughness exponent $R$ if the $p^{\text{th}}$ variation of $x$ converges to zero if $p>1/R$ and to infinity if $p

Suggested Citation

  • Xiyue Han & Alexander Schied, 2021. "The roughness exponent and its model-free estimation," Papers 2111.10301, arXiv.org, revised Jun 2024.
  • Handle: RePEc:arx:papers:2111.10301
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2111.10301
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2018. "Volatility is rough," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 933-949, June.
    2. Rosenbaum, Mathieu, 2009. "First order p-variations and Besov spaces," Statistics & Probability Letters, Elsevier, vol. 79(1), pages 55-62, January.
    3. Alexander Schied & Iryna Voloshchenko, 2015. "Pathwise no-arbitrage in a class of Delta hedging strategies," Papers 1511.00026, arXiv.org, revised Jun 2016.
    4. Han, Xiyue & Schied, Alexander & Zhang, Zhenyuan, 2021. "A probabilistic approach to the Φ-variation of classical fractal functions with critical roughness," Statistics & Probability Letters, Elsevier, vol. 168(C).
    5. Hans Follmer & Alexander Schied, 2013. "Probabilistic aspects of finance," Papers 1309.7759, arXiv.org.
    6. L. C. G. Rogers, 1997. "Arbitrage with Fractional Brownian Motion," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 95-105, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthieu Garcin, 2021. "Forecasting with fractional Brownian motion: a financial perspective," Papers 2105.09140, arXiv.org, revised Sep 2021.
    2. Daniel Bartl & Michael Kupper & David J. Prömel & Ludovic Tangpi, 2019. "Duality for pathwise superhedging in continuous time," Finance and Stochastics, Springer, vol. 23(3), pages 697-728, July.
    3. R. Vilela Mendes, 2022. "The fractional volatility model and rough volatility," Papers 2206.02205, arXiv.org.
    4. Stoyan V. Stoyanov & Svetlozar T. Rachev & Stefan Mittnik & Frank J. Fabozzi, 2019. "Pricing Derivatives In Hermite Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(06), pages 1-27, September.
    5. Andrew L. Allan & Chong Liu & David J. Promel, 2021. "A C\`adl\`ag Rough Path Foundation for Robust Finance," Papers 2109.04225, arXiv.org, revised May 2023.
    6. Yuliya Mishura & Kostiantyn Ralchenko & Sergiy Shklyar, 2020. "General Conditions of Weak Convergence of Discrete-Time Multiplicative Scheme to Asset Price with Memory," Risks, MDPI, vol. 8(1), pages 1-29, January.
    7. Angelini, Daniele & Bianchi, Sergio, 2023. "Nonlinear biases in the roughness of a Fractional Stochastic Regularity Model," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    8. Rama Cont & Purba Das, 2022. "Rough volatility: fact or artefact?," Papers 2203.13820, arXiv.org, revised Jul 2023.
    9. Matthieu Garcin, 2021. "Forecasting with fractional Brownian motion: a financial perspective," Working Papers hal-03230167, HAL.
    10. Yuecai Han & Xudong Zheng, 2022. "Approximate Pricing of Derivatives Under Fractional Stochastic Volatility Model," Papers 2210.15453, arXiv.org.
    11. Henry Chiu & Rama Cont, 2022. "A model-free approach to continuous-time finance," Papers 2211.15531, arXiv.org.
    12. Alexandre Pannier & Antoine Jacquier, 2019. "On the uniqueness of solutions of stochastic Volterra equations," Papers 1912.05917, arXiv.org, revised Apr 2020.
    13. Xiyue Han & Alexander Schied & Zhenyuan Zhang, 2022. "A Limit Theorem for Bernoulli Convolutions and the $$\Phi $$ Φ -Variation of Functions in the Takagi Class," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2853-2878, December.
    14. Fageot, Julien & Fallah, Alireza & Unser, Michael, 2017. "Multidimensional Lévy white noise in weighted Besov spaces," Stochastic Processes and their Applications, Elsevier, vol. 127(5), pages 1599-1621.
    15. Josselin Garnier & Knut Sølna, 2018. "Option pricing under fast-varying and rough stochastic volatility," Annals of Finance, Springer, vol. 14(4), pages 489-516, November.
    16. Christian Bayer & Peter K. Friz & Paul Gassiat & Jorg Martin & Benjamin Stemper, 2020. "A regularity structure for rough volatility," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 782-832, July.
    17. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
    18. Elisa Alòs & Maria Elvira Mancino & Tai-Ho Wang, 2019. "Volatility and volatility-linked derivatives: estimation, modeling, and pricing," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 321-349, December.
    19. Turvey, Calum G., 2001. "Random Walks And Fractal Structures In Agricultural Commodity Futures Prices," Working Papers 34151, University of Guelph, Department of Food, Agricultural and Resource Economics.
    20. Zhang, Wei-Guo & Li, Zhe & Liu, Yong-Jun, 2018. "Analytical pricing of geometric Asian power options on an underlying driven by a mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 402-418.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2111.10301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.